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Motivation

A problem in biophysics is to explain the shape of membranous
structures, such as a red blood cell. The currently acccepted model
for this purpose is due to Wolfgang Helfrich. While we may observe
membranes in a laboratory, it would be advantageous to simulate them
on a computer. Thus, our goal is to develop the numerical tools
necessary to allow for an accurate simulation of membranes and
numerical exploration of the Helfrich model.

The Problem

The Helfrich model proposes that the membrane shape is determined by
minimizing a curvature quantity known as the bending energy, subject
to a few physical constraints. More formally, the problem is

min
S

∫
S
αH2 + βK dA

s.t. A =
∫
S

1 dA = a0,

V = 1
3
∫
S
[xî + yĵ + zk̂] · n dA = v0

M =
∫
S
H dA = m0.

where a0 and v0 are the area and volume constraints, m0 is the lipid
bilayer constraint, H is the mean curvature, K is the Gaussian
curvature, dA is the area element of the surface, and both α and β are
due to the physical environment.

While the area and volume constraints are natural, the total mean
curvature (M) constraint deserves an explanation. It is due to the area
difference created by the lipid bilayer structure.

M =
∫
S
H dA = lim

ε→0

S+ε − S−ε
2ε

Computational Challenge

A smooth surface is an infinite dimensional object, not to mention that
it may have nontrivial topology. This naturally leads to the questions:

•How could one accurately represent a surface on a computer, which
has finite memory?

•How could one faithfully compute all the relevant attributes (area,
volume, mean curvature, bending energy)?

•How would one solve the optimization problem computationally
required by the Helfrich Model?

Our Approach

We explore the Helfrich model computationally using subdivision
surfaces, which are traditionally used in the computer aided design
industry (i.e. Pixar). We use these to approximate the cell membrane
surface, and then we solve the optimization problem numerically,
allowing us to accurately simulate the Helfrich model.

How Do We Do This?

For each subdivision surface, there is an associated control mesh.
The control mesh is a finite set of vertices and associated edges;
this structure captures the topology of the cell. Using this data,
we can calculate the local polynomial patches that form the whole
surface. From the polynomials, we calculate the quantities we need
for the Helfrich model: area, volume, total mean curvature, bending
energy and their rates of change with respect to the vertices. We can
then find the surface of minimal energy by solving the constrained
minimization problem using standard optimization tools.

P = ∑
ν
CνΦν

= ∑
ν
Cν

∑
η dνηBη

= ∑
η,ν
CνdνηBη

= ∑
η
C̄ηBη

DCνW = DCνC̄η × DC̄η
W

linear nonlinear

Results

Our figures generated from numerical simulation agree with previous
theoretical and experimental results from the biophysics community.

Future Work

•Numerical exploration of uniqueness
•Numerical analysis of proposed approach
• Implementation in C++
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