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Motivation

In materials science, we study the structure of solid state materials,
as the arrangment of atoms determines its mechanical and physical
properties, which is important in fields such as chemistry and mate-
rial engineering. For example, an engineer may want to produce an
alloy with certain properties. Instead of physically making alloys with
different combinations and amounts of metals, which is expensive, the
engineer could simulate the alloy on a compuer and determine its prop-
erties. This simulation is achieved by using computational methods
based on quantum mechanics.

The Physics

We are interested in a material’s structure at its ground state, which
is the lowest energy state. The structure is determined by the interac-
tions between the particles in our physical system. There are different
methods to investigate these interactions. We use an ab initio method,
which is based on quantum mechanic principles, and no empirical data
assumptions. Thus, ab initio methods rely on only the particle interac-
tions, captured by the time independent Shrödinger’s Equation,
which is

HΨ = EΨ
where H is the Hamiltonian operator, Ψ is the wave function, and E
is the energy. The Hamilitonian is ∆ + V , where ∆ is the Laplacian,
and V is the potential field. Ψ is a function of all the particles in the
system. Because the electrons are approximately fixed relative to the
motion of the electrons, we can approximate the wave function via the
Born-Oppenheimer approximation.

Ψ ≈ Ψ(nuclei)Ψ(electrons)
Thus, we calculate Ψ(electrons). Unfortunately, the many electron
Shrödinger’s equation cannot be solved, as the resulting mathematical
problem has too many variables (corresponding to the number of elec-
trons in the system!). Fortunately, due to the work of Kohn and Sham
in their development of density functional theory, we can transform the
many elecron Shrödinger’s equation into a single electron Shrödinger’s
equation, or Kohn-Sham equation with no loss of accuracy.

The Kohn-Sham equation is
(∆ + veff)ψ = εψ

where ∆ is the Laplacian, veff is the effective one-electron potential, ψ
is the single electron wave function (block wave), and ε is the energy
parameter.

Solving the Kohn-Sham equation

There exists different methods to solve the Kohn-Sham equation. We
use a method based on Multiple Scattering Theory. Multiple
scattering theory invovles the idea that interactions between the nuclei
and electrons “scatter” the electrons. In our method, we divide the
physical space into cells. Each cell contains one scattering center, the
nucleus. The method calculates the equations for each single scattering
site independently and combines them together. This is advantageos
because we may only need to calculate a few sites for materials with
periodicity. For example, in metals, each site is essentially the same,
so we only need to do the calculation at a single site once for a set of
energy parameters.

The Current Implementation

Currently, there is a working implementation of multiple scattering
method in a Fortran software package called MST. MST takes as
input a physical system of atoms and the corresponding parameters,
numerically calculates the Kohn-Sham equation, and determines the
structure of the material which yields the lowest resulting energy (the
ground state). The CalPhiLr subroutine in the single site scattering
solver is currently the bottleneck of the package, which is something
we would ultimately like to resolve.

The Bottleneck
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CalPhiLr is 45% of the total running time!
CalPhiLr = Θ(L3

max)

Parallelizing the Bottleneck

The multiple scattering theory method allows us to write the block
wave function ψ as a linear combination of regular solutions φL local to
each single scattering site. Thus, ψ =

∑
L

cLφL. Each φL is a solution
to the Shrödinger equation at a specific single scattering site. These
regular solutions φL can be solved independently of each other by the
CalPhiLr routine.
In each calculation of φL, there is opportunity for more parallelization.
During the calculation, there are sums in which the terms are inde-
pendent of each other, so they can be calculated at the same time.

GPU Implementation

The Graphic Processing Unit, or GPU, has traditionally been
used for the sole purpose of displaying graphics. All other processing,
including computation, has been handled by the Central Process-
ing Unit, or CPU. Thus, most scientific computing packages are writ-
ten to be run on the CPU. Recently, GPUs have been engineered not
for the purpose of displaying graphics, but for the purpose of being
used in scientific computing. GPUs allow for greater parallelism for
arithmetic operations, resulting in a potential huge performance bene-
fit. NVIDIA is the current leader in manufacturing GPUs for general
purpose calculations. CUDA is NVIDIA’s parallel computing platform
and programming model for calculating on the GPU. CUDA supports
a subset of the C programming language. Recently, the calculation of
φL in CalPhiLr was ported to C. Currently, it is being implemented
on the GPU using CUDA extensions to allow the single site wavefunc-
tions to be computed independently. Future work includes optimizing
the CUDA code to take advantage of the hardware through techniques
such as memory coalescing.
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