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ABSTRACT
The demand for multitasking GPUs increases whenever the GPU
may be shared by multiple applications, either spatially or tempo-
rally. This requires that GPUs can be preempted and switch context
to a new application while already executing one. Unlike CPUs,
context switching in GPUs is prohibitively expensive due to the
large context states to swap out. There have been a number of
efforts on reducing the overhead of preemption, through reducing
the context sizes or overlapping context switching with execution.
All those techniques are reactive approaches, meaning that context
switching occurs when the preemption request arrives.

In this paper, we propose a proactive mechanism to reduce the
latency of preemption. We observe that kernel execution is almost
always preceded by known commands in both CUDA and OpenCL
implementations. Hence, a preemption can be anticipated before
the actual request arrives. We study such lead time and develop
a prediction scheme to perform an early state saving. When the
actual preemption is invoked, an incremental update relative to
the previous saved state is performed, much like the conventional
checkpointing mechanism. This design effectively reduces the stall
time of the preempting kernel due to context switching by 58.6%.
Moreover, through careful handling of the saved state, we can
also reduce the overall size of saved state by an average of 23.3%,
compared with a full context switching.
1 INTRODUCTION
Due to their massive parallel processing capability, GPUs are now
seen in various domains such as high-performance computing,
machine learning and scientific computing [3][22][23]. These com-
putations are often done on cloud providers, who may offer GPUs
as a service to be shared between users. Hence, GPU support for
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multitasking is now necessary. Some preliminary hardware features
for multitasking are already in-place, such as Hyper-Q provided by
Nvidia’s Kepler architecture [15], and the command processor sup-
ported by AMD [2][9]. While this was a step in the right direction,
much still needs to be done for true multitasking support [1][6][9].

Context switching, a technique used in CPUs to support multi-
tasking [11], has also been proposed for GPUs [1][20]. CPU pro-
cesses are relatively lightweight, allowing for fast context switching
and efficient time-multiplexing. However, a GPU context is mas-
sive compared to a CPU context [14]. For example, in the GTX980
GPU [16], the context size may be as large as 256KB for registers
and 96KB for shared memory per streaming multiprocessor (SM);
the total context size can be 5664KB for the entire GPU (with 16
SMs). Saving such large context takes significant memory band-
width, severely degrading performance [8][12]. This is especially
harmful for latency sensitive applications. Furthermore, context
switching increases power consumption [5].

There have been several attempts to reduce the context switching
overhead for GPUs. The earliest technique limits context switching
to a subset of SMs, so that the remaining SMs can continue execu-
tion [26]. The switching SMs are completely stalled to perform just
context swapping, and the burden on memory bandwidth remains
high. Later, a partial context switching technique allows TBs in
an SM to continue execution while swapping a particular TB [27],
which maximally overlaps memory accesses due to context switch-
ing with kernel execution. This technique was further enhanced to
allow a mix of draining (execute to completion), flushing (drop exe-
cution if idempotent) and switching TBs within each SM depending
on how soon the deadline of the preemption is [21]. In parallel with
those efforts, a lightweight context switch scheme was designed for
reducing the amount of context that has to be saved off-chip [12].
All those prior works perform preemption via a reactive approach,
meaning that all operations are activated upon the arrival of the
preemption request. As a result, the preemption latency remains a
threat to performance if the preempted kernel is not flushed. In ad-
dition, Nvidia Pascal GP100 supports compute preemption feature,
which can solve the problem that long-running applications may
monopolize the whole system. However, no details are released.

In this paper, we propose a proactive and efficient preemption
mechanism, PEP, to reduce preemption latency and overhead. By
observing the kernel launch process, we find that the actual execu-
tion of a kernel on a GPU is always preceded by the kernel launch
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action, and the time from when a kernel is launched from CPU
to the time that the kernel starts to execute on the GPU is on the
order of tens of microseconds. Leveraging this lead time and known
operation pattern, we can anticipate the arrival of a preemption
request and proactively prepare for context switching. When the
preempting kernel arrives, the remaining work for completing the
context switching is lessened. Hence, the effective preemption time
is shortened. The preparation we perform for context switching
utilizes the concept of checkpointing. First, a base checkpoint is
performed if a preemption is predicted to occur. Then, an incremen-
tal checkpoint is performed when the preempting kernel arrives at
the GPU. Saving the incremental checkpoint takes much less time
than saving the full context of a preempted kernel.

Moreover, PEP is capable of handling misprediction. If the base
checkpoint has saved the incorrect context, we can still save all
context at the incremental checkpoint. On average, the total amount
of state saved is no more than the full context with simple context
size reduction techniques.

Our contributions can be summarized as follows:

(1) We study the kernel launch process, and observe that pre-
emption can be predicted.

(2) We introduce a proactive preemption mechanism to reduce
the stall time for the preempting kernel

(3) We use a simple dirty data-saving technique to reduce con-
text size.

(4) We develop a more precise estimation on TB draining time
and context switch time, and design a runtime selection
algorithm for preemption decisions.

Our experimental results show that we can reduce the average
preemption latency from 8.9µs to 3.6µs, compared with previous
best-effort preemption work, Chimera [21]. We also reduce the
total state that needs to be saved by 16.1% compared to saving the
full context, using only simple context size reduction techniques.
Our total overhead, average switch time per TB, is 6.3% lower than
Chimera.

2 BACKGROUND AND MOTIVATION
2.1 GPU Architecture
Figure 1 is the baseline GPU architecture. We use CUDA terminol-
ogy in this paper, though the description applies to GPUs from other
vendors as well. A GPU program receives operation commands
from the host CPU during execution. The user-space runtime en-
gine transforms API calls to control data operations and kernel
launches[10]. The GPU device driver sends these operation com-
mands to the queues in the stream manager. The stream manager
manages multiple streams using software queues; all commands in
the same stream execute serially. Typically, the CPU first declares
and allocates its memory and then invokes cudaMalloc to allocate
global memory on the GPU. Then, a cudaMemcpy (H2D) call moves
data from the host to the device. Once all data is transferred, the
stream manager can launch the kernel by passing kernel informa-
tion (such as dimension configurations and entry PC address) to
the Kernel Management Unit (KMU). Then, the kernel requests SM
resources. If there are not enough resources, the kernel waits in
the kernel pending pool. If the waiting kernel has higher priority
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Figure 1: Baseline GPU Architecture

than executing kernels, it may preempt executing TBs in an SM to
obtain resources. Otherwise, it waits for previous kernels to finish.

Once the kernel is ready for execution, it is transferred to the
Kernel Distributor Unit (KDU). TBs are then dispatched to SMs
by the CTA Scheduler. The maximum number of TBs that can be
executed on an SM depends on the resource constraints, including
the number of resident TBs, registers and sharedmemory space [16].
2.2 Motivation
A recent work on optimizing preemption overhead, Chimera [21],
chooses a preemption method per TB. Between draining, flush-
ing, and context switching, Chimera chooses the one with least
overhead, as long as the resulting preemption runtime allows the
preemption deadline to bemet. This requires estimating the preemp-
tion latency and overhead of each method. Consequently, different
TBs in a single SM may be preempted with different methods.

However, draining TBs compete for memory bandwidth with
switching TBs, especially for memory intensive kernels. As an
example, Figure 2 shows the average switching time per TB as
the number of switching TBs increases. The remaining TBs are
drained; the total number of TBs per SM is 9 in this example. As we
see, when most of the TBs are drained, switching TBs take longer
to complete, due to memory interference between draining and
switching TBs. The switching time keeps decreasing as more TBs
switch.

This leads to our next observation regarding the uniformity
of preemption decisions. In most cases, TBs of an SM all either
switch or drain. Table 1 shows that in general, for large kernels, TB
execution time is much larger than the switching time; there is a
wide gap. For short kernels, those timings might be close. Thus, the
best way to preempt short kernels is to drain their executing TBs,
which best helps meeting the preemption deadline. However for
long kernels, it is more beneficial to context switch, as draining all
TBs would be too slow.

However, the main challenge to make context switching feasible
is its long latency. The total context size of current GPU [17] is
352KB per SM (256KB for registers and 96KB for shared memory).
In bad cases, transferring this context to global memory takes at
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Figure 2: Switch Time for LBM (9 TBs per SM).

Benchmarks Source Kernel
Avg

Launch
Time

Avg TB
Execution

Time

Avg
Switch
Time

CUTCP(CP) Parboil[25] cuda_cutoff
_potential 5.8µs 516.2µs 10.1µs

LBM Parboil[25] performStream
Collide_kernel 21.8µs 31.7µs 20.9µs

MRI-Q(MRI) Parboil[25] ComputeQ_GPU 10.4µs 865.2µs 11.6µs

STENCIL(ST) Parboil[25] block2D_hybrid
_coarsen 4.5µs 41.3µs 4.2µs

STREAM
CLUSTER(SC) Parboil[25] kernel_

compute_cost 6.7µs 605.6µs 8.3µs

GEMM(GM) Darknet[24] matrixMulCUDA 23.4µs 193.6µs 17.9µs
BLACK

SCHOLES(BS)
Nvidia
SDK[19] BlackScholesGPU 3.4µs 387.5µs 16.7µs

KMEANS(KS) Rodinia[7] invert_mapping 29.7µs 984.7µs 9µs
PATHFINDER(PF) Rodinia[7] dynproc_kernel 11.3µs 24.2µs 11.6µs
SRAD_V1(SRAD1) Rodinia[7] extract 5.2µs 1.8µs 4µs
SRAD_V2(SRAD2) Rodinia[7] srad_cuda 15µs 11.5µs 16.4µs
SRAD_V1(SRAD3) Rodinia[7] srad 5.2µs 7.9µs 7.8µs
HOTSPOT(HS) Rodinia[7] calculate_temp 33.3µs 4.5µs 7.7µs
LUD Rodinia[7] lud_internal 4.4µs 5.3µs 10.5µs

BACKPROP(BP) Rodinia[7] bpnn_
layerforward 16.7µs 4.7µs 2µs

BACKPROP(BP2) Rodinia[7] bpnn_adjust
_weights 16.7µs 1.5µs 1.2µs

Table 1: Benchmarks Time Comparison

least 15µs, assuming the bandwidth is fully utilized. Also, existing
preemption techniques are reactive, meaning that a wait time of
∼ 15µs or higher (with memory interference) is needed. We propose
a proactive technique to shorten the effective wait time so that the
incoming kernel execute sooner.
3 DESIGN
We introduce PEP, a proactive and efficient preemption mechanism
via checkpointing. Checkpointing is widely used in fault tolerance
to save the state of a running process periodically. We use a light-
weight mechanism to save a base checkpoint of the context before
preemption. When the actual preemption is invoked, we perform an
incremental update relative to the base checkpoint. The kernel only
needs to wait for the completion of the latter update before execu-
tion, effectively reducing the latency overhead of the preempting
kernel. We develop prediction and estimation techniques to limit
the number of checkpoints to 1 or 2 in order to control the poten-
tial performance degradation due to too frequent context savings.
Further, we also reduce the context size by saving only dirty data,
and perform in-place savings whenever possible [12]. Finally, for
short kernels, we still preserve the capability of draining, which has
no overhead. However, we do not leverage flushing in this paper.
On one hand, it requires re-execution, which often incurs a larger
overhead than context switching; on the other hand, most of TBs
are able to be flushed only at the very beginning of its execution.
3.1 Context Reduction
Traditional context switching saves all allocated context to global
memory. However, the active context at a particular point in time
is always smaller than its allocated size, enabling us to save less.

We track the active context using dirty bits. GPU registers are al-
located for each thread, and threads are executed in a warp group.
Thus, a register’s lifetime is lifetime of its associated warp. When a
warp is done, all registers allocated for these threads are released.
To track register use, we set a dirty bit once a register is written
to in the write-back stage, and we unset it if we checkpoint and
whenever the warp finishes. Therefore, every time we switch con-
text, only registers with dirty bits set are saved. We do not apply
a liveness register saving technique [12], since it requires setting
fixed preemption points to avoid the high overhead.

We also leverage in-place context saving [12] at the incremental
checkpoint. It can further reduces the actual preemption time, as
less context need to be saved to global memory.

3.2 Prediction and Estimation
The prediction of kernel launch time and estimation of draining and
switching time are key components of PEP. TB runtime selection
in Section 3.3 is based on them.

Prediction In order not to wastefully checkpoint, we must be
able to predict when preemption occurs. Since the cudaLaunch call
triggers the kernel launch action, this is the time from when cud-
aLaunch is called to the time that kernel information arrives to the
KMUwithout queuing in the streammanager. We observed from Ta-
ble 1, for the set of applications we examined, the length of context
switch time can be similar to the kernel launch time, approximately.
Thus, if we start checkpointing at the moment cudaLaunch is called,
then preemption probably has occurred by the time the first base
checkpoint finishes. In this case, we release resources immediately,
making room for new kernels. Our design does not require precise
predictions of kernel launch time. This is because if the checkpoint
finishes before the actual preemption request arrives, the SM can
just continue executing the checkpointed TB. Once preemption
actually starts, we then save a much smaller dirty context.

We also find that the average TB execution time varies a lot
depending on the length of the kernel. Short kernels’ TBs will drain
relatively fast. Only long TBs will be more likely to context switch.
As these TBs’ execution times may be hundreds of microseconds, it
is easy to roughly predict whether the TB will be preempted or not
at the time cudaLaunch is called. We can set a certain kernel launch
time, such as 20µs, for prediction purposes. When a cudaLaunch is
called by the GPU driver, we compare the predicted kernel launch
time with the remaining TB execution time for each TB. If the
predicted launch time is smaller than the remaining TB execution
time, then we start checkpointing right away. Otherwise, we drain
the TB. Note that the variation of the kernel launch time is relatively
small compared with TB execution time. As shown in Figure 3, PEP
can handle all 5 possibilities, which we will clarify in Section 3.3. As
shown, even if the true kernel launch time is away from 20µs, it is
unlikely to cause a different preemption decision. In the worst case,
the wrong estimation causes a base checkpoint to occur too early,
causing a misprediction of TB choice. In this case, the incremental
checkpoint can save all of the context of the correct TB.

Estimation Once a preemption is predicted to happen, we must
make a decision regarding currently executing TBs. If the remaining
execution time of the TBs is shorter than the time to perform a base
checkpoint (e.g. for short TBs), then we drain. Otherwise, we per-
form a checkpointing (context saving). Hence, we need to estimate
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the draining time of current TBs and the latency of checkpointing.
Chimera[21] uses time estimation to compare the throughput over-
heads between different preemption methods. They estimate the
drain time as the product of the remaining instructions and the
previous CPI of the TB; the context switch time is the context size
of the TB divided by the global memory bandwidth shared by the
SM. However, this TB-based estimation is inaccurate. For context
switching, the context of TBs in SMs are transferred serially; their
estimation only considers a single TB. Thus, their switch time es-
timation is much shorter than actual switch times. Furthermore,
some applications like LBM and KS have multiple phases; their CPI
is time-varying. In these cases, their drain time estimation may
be far off. Also, they do not consider the bandwidth competition
between switching TBs and draining TBs.

From Table 1, we observe a wide gap between TB execution time
and TB switch time. In most applications, we choose to drain all TBs
or switch all TBs. Hence, the drain time and context switch time
can be estimated without interference. We also profile previously
executed TBs to obtain average TB execution time, and use this to
estimate a TBs remaining execution time. However, if there is no
previous profile available, we use Chimera’s estimation. To estimate
context switching time, we assume the worst case, where all the
TBs in an SM switch. As the context switch time has a small range
of variation compared to the execution time, we are safe in using
the worst case estimate.

3.3 Proactive Preemption Design
Checkpoint Saving Checkpointing is only used for long running
preempted kernels, since their drain times are too long. When
a kernel is running on the SMs, if cudaLaunch is called by the
GPU driver, we know that a new kernel will be transferred to the
GPU within several to tens of microseconds. At this moment, the
GPU driver sends a signal to activate the microprogrammed trap
routine [13]. We estimate that this latency is less than 3µs, which
is the time for launching an empty kernel. The signal triggers a
base checkpoint saving. We pause fetching new instructions, and
drain the pipeline. Otherwise, the state of checkpoint context will
be inconsistent.

When the checkpointing is done, all the dirty bits are cleared.
Then, the GPU checks whether the new kernel is transferred to the
KMU or not. If it is in the pending kernel pool, it starts execution
once it obtains SM resources. Then, the current kernel can be pre-
empted immediately, as the current execution state has been saved.
Otherwise, the current kernel continues executing until the actual
preemption request arrives. When the actual preemption request
arrives, we only need to save a much smaller incremental update
to the base checkpoint, which takes much less time. Restoration of
the preempted kernel is similar to conventional checkpointing. If
we have two checkpoints’ states to restore, we must restore one by
one.

Runtime Selection As we know from the Table 1, execution
time, context size, and launch time can vary among kernels. Hence,
when cudaLaunch triggers our proactive preemption mechanism,
there are several possibilities, as shown in Figure 3.

(a) Two checkpoints: The kernel launch time is longer than the
base checkpoint saving time. When the actual preemption
starts, we save an incremental checkpoint.
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Figure 4: Design Flow

(b) Single checkpoint: This is the same as a traditional context
switch, but it starts earlier.

(c) Drain: The TB execution time is shorter than preempting
kernel launch time,

(d) Drain then single checkpoint: The preempted kernel is the
same as in case (b), but the current TB is almost finished. The
newTBwill start execution for a fixed number of instructions
before saving the checkpoint.

(e) Drain then two checkpoints: The preempted kernel is the
same as in case (a). The current TB is almost finished when
cudaLaunch is called.

We design a runtime selection mechanism shown in Figure 4to
handle all possibilities. When cudaLaunch is called for the preempt-
ing kernel, we compare the predicted kernel launch time with the
estimated remaining execution time of current TB. If the predicted
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Configurations Nvidia Geforce GTX980
Num. of SMs 16
SIMT Core Clock 1216MHz
Memory Clock 7GHz
Memory Controller 4
Schedule Scheme 4 warp schedulers with LRR
Registers 256KB
Shared memory 96KB

Table 2: GPGPU-Sim Configuration Parameters
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preemption will occur within the TB, proactive preemption starts.
If the TB’s drain time is longer than the switch time, we define this
kernel as long. Case (a) and (b) operate for long kernels, collecting
active context and saving a base checkpoint to global memory. For
the other cases, the kernel’s predicted preemption will not occur
within the current TB’s lifetime, so the choice is to drain them.
After that, we will do another round of prediction and estimation.
If the new TB is estimated to drain sooner than being checkpointed,
we have case (c). Otherwise, we are in case (d) or case (e), which is
similar to case (b) or case (a) again.
4 EXPERIMENTS
We implement PEP on the latest version of GPGPU-Sim [4]. The
system configuration is summarized in Table 2. For comparison,
we implement Chimera and PEP with different variations: vanilla
Chimera, Chimera with saving dirty context only, vanilla PEP and
PEP with the in-place context saving. We test using a wide range of
kernels from Nvidia Computing SDK [19], Parboil [25], Rodinia [7]
and Darknet [24]. For Chimera, we observed that the average con-
text switch time is always smaller than 20.9µs, so we test a sequence
of deadlines of 5µs, 10µs and 15µs. For PEP, the actual kernel launch
time may vary from kernel to kernel, so we vary this parameter
from 5µs, 15µs, 25µs to 35µs. However, our prediction algorithm
only uses a fixed time to predict for simplicity, so we perform sen-
sitivity study from 20µs to 30µs for this time, as seen from most
applications. Further, we also assume different progress, 25%, 50%
and 75%, of TBs when the preempting kernel is launched to cover
more general cases. The results shown below are averages over
a particular parameter. We then compare the preemption latency,
context size and preemption overhead of these different designs.
In Table 1, the average launch times are collected from the Nvidia
Visual Profiler [18], while the other times are collected from the
GPGPU-Sim and then calibrated to the real time.

4.1 Selection Distribution
In Figure 5, we show the breakdown of runtime selection for all
TBs of each application. TBs incurring two checkpoints are from
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the six applications with average TB execution time longer than
100µs (See Table 1). TBs incurring only draining are from short
kernels with short average TB execution time. For LBM, the average
TB execution time is 30.1µs, comparable to its average switch time
which is 20.9µs. This closeness is what allows for the variation of
choices between draining and checkpointing, depending on the
progress parameter. Similar observation is made for PF as well.

Since there is a large gap between the average drain time and
average switch for most kernels, we usually choose a single preemp-
tionmethod for all their TBs. Choosing a single methodmeans there
is no bandwidth competition between draining and switching TBs.
Hence, our estimates on latencies do not suffer from interference
of memory contention.
4.2 Preemption Latency
Figure 6 shows the preemption latency, which is measured from
time of the arrival of kernel at KMU to the last TB’s context is saved.
This is also the actual waiting time for the preempting kernel in
the kernel pending pool. For the first nine kernels, since the dom-
inant TB actions is checkpointing, the context size is the key to
the preemption latency. Compared with Chimera, Chimera+Dirty
reduces the preemption latency by 31.8%, as it only saves dirty data.
Both versions of PEP are more effective than Chimera+Dirty. Com-
pared with Chimera, PEP, and PEP+In-place reduces the average
preemption latency by 58.5% and 70.3% respectively. In particular,
for KS, PEP+in-place has zero preemption latency because the dirty
context for incremental checkpoint is small enough to be saved
on-chip completely.

For the last seven kernels which drain all TBs per SM achieve
low latencies because they have short TB execution times. With our
proactive approach, on average, PEP and PEP+In-place reduce the
total preemption latency from 8.9µs in Chimera to 4.5µs and 3.6µs
respectively. A shorter preemption latency allows kernels to meet
a stricter deadline, increasing its effectiveness for multitasking.

4.3 Context Size Reduction
Figure 7 compares the context size among different designs. Saving
only dirty context, Chimera+Dirty can reduce the average context
size by 6KB per TB, which is 34.4% of its average total context
size. Since PEP may save checkpoint states twice, its average total
context size might be larger than Chimera+dirty. However, the
amount is almost the same as original Chimera. With in-place
saving, PEP can further reduce the context size by 16.2%.

Figure 8 shows the breakdown of context for PEP+in-place. For
applications that choose to context switch all the TBs, the total
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context size is the sum of the base checkpoint and the incremental
checkpoint. The result shows that the context size in the incremen-
tal checkpoint averages 3.34KB per TB, which is only 29.4% of the
average context size in the base checkpoint. This is a critical size
as it largely determines the wait time of a preempting kernel.

4.4 Impact of Preemption and HW Overhead
The overhead for preemption is the idle time of execution units
caused by preemption.When the SM is switching context, switching
TBs are stopped from fetching instructions and executing. SMs
are idle for both context swap out and context restore. The only
difference between swapping out and restoration times is that we
drain the pipeline before swapping out. Hence, we only compare
the average context saving latencies per TB as overhead for the
preempted kernel.

Figure 9 shows that the base checkpoint reduces the average over-
head by 37.9% fromChimera. This overhead is similar to Chimera+dirty.
With checkpointing, the overhead of our PEP is still 6.3% lower
than Chimera. The overhead can be further reduced by 16.4% with
the in-place saving. Some applications with high register reuse rate
do have higher overhead compared with Chimera. However, the
context size and the context switch overhead are positively corre-
lated. Some applications such as LBM and ST save more than 50% of
overhead, due to a small incremental context sizes.

To implement PEP, the GPU needs to be extended with new
control logic to mainly implement the following: (1) prediction

and estimation units, which involve counters for profiling and
comparators for making decision; (2) dirty bits, one bit for each
register, totaling 8 KB per SM for the GTX980 GPU [16]; (3) profiler
counters, which are used for collecting TB execution times. Overall,
the majority of overhead is largely in the dirty bit storage.

5 CONCLUSION
In this paper, we proposed PEP, a proactive preemption mechanism
on GPUs.With only a rough prediction of preempting kernel launch
time, we can successfully anticipate preemption before the actual
request arrives. We borrow checkpointing from fault tolerance,
which allows us to shorten preemption latency. We also support
SM draining for short kernels. For our proactive checkpoint mech-
anism, we achieve 58.6% average preemption latency reduction
and 23.3% average context switch overhead reduction. The average
preemption latency is also reduce to 3.6µs, which allows for stricter
deadlines, thus increasing multitasking support.
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