IVcache: Defending Cache Side Channel Attacks
via Invisible Accesses

Yanan Guo
University of Pittsburgh
Pittsburgh, PA, USA
yag45@pitt.edu

Youtao Zhang
University of Pittsburgh
Pittsburgh, PA, USA
zhangyt@cs.pitt.edu

ABSTRACT

The sharing of last-level cache (LLC) among different CPU cores
makes cache vulnerable to side channel attacks. An attacker can
get private information about co-running applications (victims) by
monitoring their accesses in LLC. Cache side channel attacks can
be mitigated by partitioning cache between the victim and attacker.
However, previous partition works either make weak assumptions
about the attacker’s strength or force their security mechanisms
and thus overhead to every user on the system, regardless of their
security requirement.

We argue that offering security protection as a service is a better
choice for secure cache design. To achieve this, we propose Invisible-
Victim cache (IVcache), a new cache partition design targeting both
the original LLC attack and the new variant. IVcache classifies
all security domains on the system as protected and unprotected.
For LLC accesses from protected domains, IVcache handles cache
state changes in a slightly different way to make those accesses
invisible to any other security domains. We implement and evaluate
IVcache in Gem5. The experimental results show that IVcache can
defend against real-world attacks, and that it introduces negligible
performance overhead to protected domains and no overhead to
unprotected domains.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and coun-
termeasures; « Computer systems organization — Architec-
tures; Multicore architectures.

KEYWORDS
Security; Side channel; Cache

ACM Reference Format:
Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. 2021. IVcache:
Defending Cache Side Channel Attacks via Invisible Accesses. In Proceedings

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI 21, June 22-25, 2021, Virtual Event, USA.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8393-6/21/06...$15.00
https://doi.org/10.1145/3453688.3461481

Andrew Zigerelli
University of Pittsburgh
Pittsburgh, PA, USA
anz37@pitt.edu

Jun Yang
University of Pittsburgh
Pittsburgh, PA, USA
juy9@pitt.edu

of the Great Lakes Symposium on VLSI 2021 (GLSVLSI °21), June 22-25, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3453688.3461481

1 INTRODUCTION

Cache timing side channel attacks, or cache attacks for short, have
been demonstrated to be extremely potent. Different cache behav-
iors, such as hits and misses, create significant execution timing
differences. Attackers are thus able to use this timing information
to monitor other processes’ (victims’) cache behavior and possibly
infer secrets. Cache attacks work on both the private and shared
caches. However, for the private caches (e.g., L1 cache), the victim
and attacker must run on the same core. In contrast, shared cache
attacks (e.g., last-level cache attacks) are much more powerful be-
cause the attacker can be on a different core than the victim. Many
different architectural solutions have been proposed to mitigate
timing attacks on last-level cache (LLC) [9, 10, 13, 15, 17], which
can be classified into randomization-based solutions and partition-
based solutions. A popular way to implement randomization-based
defenses is to create a random mapping between cache lines and
cache sets [13, 15]. Unfortunately, these designs have been proven
insecure [12].

The root cause of cache attacks is that the victim’s execution
changes cache states which are visible to attackers. Thus, to make
a rigorous defense, we should hide the victim’s cache behavior
from the attacker’s view. From this standpoint, partition-based so-
lutions seem to be more effective. Once the victim and attacker
are completely separated in cache, the attacker cannot observe the
victim’s access patterns anymore. However, most prior partition de-
signs [6, 14, 17] only focus on defending the original Prime+Probe
attack [11]. With the new discovery of the attack based on re-
placement states [16], these defenses become insecure. Very recent
partition designs [5, 10] cover this new attack; however, they either
cause significant overhead, or force their security designs to every
user, which is not fair to security-insensitive users.

A fair partition design should distinguish between security sensi-
tive users (i.e. victims) and other users, protecting victims without
generating performance overhead to other users, instead of forcing
the security design and overhead to everyone. Thus, we propose
Invisible-Victim cache (IVcache). IVcache is a novel cache partition
design that prevents LLC attacks by making the victim’s cache
behavior “invisible” to all other processes. IVcache targets both

https://doi.org/10.1145/3453688.3461481
https://doi.org/10.1145/3453688.3461481
https://doi.org/10.1145/3453688.3461481

the original cache attacks and the new variants. We enumerate
all situations a victim’s access could face in LLC, and show how
to make cache state changes caused by the victim invisible. Our
design trades some performance for security, but we also develop
two optimization mechanisms to salvage the performance of the
victim, without affecting other users.

We implement IVcache in Gemb5 [2] and test it against a real-
world attack, showing that we can effectively prevent it. In addition,
we run workloads derived from SPEC2017 [1] to test the perfor-
mance of IVcache. The experimental results show that IVcache
causes negligible overhead to the victims and slight performance
benefit to the co-running non-victim applications.

2 BACKGROUND AND RELATED WORK
2.1 LLC attacks

There are two general approaches for LLC attacks, according to
whether or not the attack requires data sharing between the attacker
and victim. In sharing-based attacks, including Flush+Reload [20],
Evict+Reload [8], and the coherence attack [19], the attacker ob-
serves the victim’s access pattern to a shared cache line to infer the
victim’s secrets. These attacks can be stopped by disallowing the
sharing of sensitive data.

Prime+Probe [11] is a more general LLC attack as it does not
require data sharing. In Prime+Probe, the attacker fills a target LLC
set with his own cache lines during the prime stage. He later probes
this LLC set with the same cache lines and times the accesses: if
a cache miss is detected, it indicates that the victim accessed this
LLC set, exposing the victim’s access.

In Prime+Probe, the attacker forces the victim to have cache
misses because a cache miss from the victim evicts the attacker’s
cache line and thus causes leakage. In fact, when the victim’s access
hits in LLC, it changes the replacement state (e.g., LRU state) of
the attacker’s cache line (in the same LLC set); this state change
can also be observed by the attacker. In 2020, Xiong et al. proposed
an attack based on LRU state changes [16]. The basic attack repeats
the following steps:

a) Victim accesses his line in an LLC set, and then the attacker
accesses his (w — 1) initial lines in this set, where w is the
set associativity. After this, the victim’s line will become the
oldest one in this set.

b) Attacker waits for a period of time.

c) Attacker loads a new line (disjoint from the initial lines in
Step a)) into this set, which removes the oldest line.

d) Attacker accesses the (w — 1) initial lines again. One of the
following may occur:

e All initial lines are still resident in LLC. This means the
victim didn’t access his line during the waiting period.
Thus, in Step c), the victim’s line was evicted because it
was the oldest line in LRU order.

e One of the initial lines is not in LLC. This means the victim
accessed his line during the waiting period. Thus, in Step c),
one of the attacker’s initial lines became the oldest one
and was evicted!.

!Monitoring LRU state changes in LLC requires removing the line from private cache
since private cache hits do not update the LRU state in LLC.

2.2 Prior defenses and their limitations

Randomizing the address mapping in LLC is a popular way to defend
LLC attacks. Many randomization works have been proposed [13—
15]. However, most of them have already been proven to be insecure
or having high overhead [12].

Partition-based methods are more effective than randomization-
based methods. PLCache [14] uses cache line locking to keep the
lines of protected processes always in cache; NoMo [6] realizes way-
level partition by changing the replacement policy. However, these
designs have high overhead and do not scale. SHARP [17] prevents
LLC attacks by avoiding the creation of “inclusion victims”. SHARP
is most related to our work. However, it makes weak assumptions,
such that the victim’s security-sensitive cache lines should always
be in his private cache. Our design avoids these assumptions to be
more secure. More importantly, most of these early partition works
did not consider the LRU attack, and are thus not secure.

Newer cache partition designs such as DAWG [10] cover both
Prime+Probe and the LRU attack. However, in most of these works,
the security design is applied to all users including security-insensitive
users (e.g., DAWG requires reserving cache ways for each security
domain).

3 IVCACHE DESIGN
3.1 Threat model

In this work, the targeted attacker is an unprivileged user that can
launch himself on the same processor with the victim. Additionally,
the attacker should be able to build set conflicts in LLC (e.g., by
using the method in [11]). We assume that Hyper-Threading (which
allows the attacker and victim to co-locate on the same CPU core)
is turned off or unavailable. Then the attacker is only sharing the
LLC portion of cache with the victim. We also assume a trusted
operating system (OS) as in [10, 14, 17].

We exclude the LLC attacks relying on data sharing, because
these attacks can be stopped by disabling data sharing across secu-
rity domains, or by maintaining multiple copies of a cache line in
LLC, as done in [10]. We also exclude leakages caused by bank con-
flict, memory bus contention, and other minor leakages discussed
in [4], since they can be defended by simple hardware changes [3].
Speculative execution-based side channels are not considered as
they can be solved by orthogonal works such as [21].

3.2 Basic design

IVcache assumes an inclusive cache for simplicity. However, our de-
sign can be slightly modified to defend against non-inclusive cache
attacks [18] by instead changing the cache directory structures.
Our design principle is the same regardless: we modify how state
changes propagate so that the victim’s cache accesses are invisible.

We use cache security domains (SD), introduced in [10]. Each
SD is a group of one or several processes with mutual trust. Instead
of forcing every SD to use protection mechanisms, IVcache allows
users to request protected status in cache and only protects these
SDs; users which do not request protection are all grouped into a
single "unprotected"” SD. We achieve this by extending the ISA with
an new instruction, which informs cache to tag an SD as protected.
Then, cache accesses from protected SDs (i.e. victims) use IVcache’s

security mechanisms. Naturally, IVcache attaches the SD id to all
the LLC accesses. This mechanism has been previously used, for
both performance and security. The SD id can be obtained from
the thread/process context. IVcache also requires tagging LLC lines
that are owned by a victim, using the SD id. This tagging occurs
when a victim brings a line into LLC from memory.

IVcache’s philosophy is to ensure that in LLC, a victim’s cache
access cannot be observed by any attackers. Next, we discuss how
to hide the victim’s LLC misses (from a Prime+Probe attacker), and
the victim’s LLC hits (from an LRU attacker), respectively.

3.2.1 Defending Prime+Probe attack. If a victim’s access misses
in both the private cache and LLC, and the target LLC set has space
for a new cache line. Then the victim is safe and IVcache works
same with a normal inclusive cache: load the data from memory,
fill it into the private cache and LLC, and send the data to CPU.

If a victim’s access misses in LLC, and the target LLC set is full,
in traditional caches, the LRU line in the target set will be evicted.
However, if the evicted line is an attacker’s probe line, the attacker
can detect this victim’s access. Instead, IVcache makes the victim’s
access invisible from a Prime+Probe attacker as follows:

e Step 1: Self-eviction
IVcache tries to evict a line which is owned by the victim, if
possible (Figure 1(a)).

o Step 2: Bypass
If Step 1 fails (the victim owns no line in the set), then we by-
pass the cache fill to avoid vulnerable evictions. For loads, the
data is sent directly to CPU; for writes, it’s directly written
to memory (Figure 1(b)).

In this way, IVcache effectively prevents dangerous set conflicts
and hides the victim’s LLC misses. However, victims may gradually
lose their occupancy in LLC due to our design. In Section 3.3 and 3.4
we discuss how to solve this problem.

Victim Others Victim Others

L1 set0
. i
L1set2
(@) =
H LLC set0 [0 cache line owned by victim
LLC set1
LLC set2 . Cache line owned by others
Victim Others Victim Others
L1 seto [0 Newly fetched victim line
0 L1 set1
= L1set2

® H
LLC set0
LLC set1
LLC set2

Figure 1: (a) Self-eviction and (b) Bypass mechanism; L1
cache is bypassed in (b) due to cache inclusion.

3.22 Defending the LRU attack. Modern LLCs use LRU policy
and its variants (e.g., Tree-LRU), but we have shown that attackers
can manipulate these policies to spy on victims. In contrast, uni-
formly random replacement is leakage free, because the attacker
cannot associate the replacement state changes of his cache line
with the victim’s accesses. However, for some applications, ran-
dom replacement causes significant performance degradation, e.g.,
it interacts negatively with the hardware prefetcher. In IVcache,
we build a new replacement policy called Random-LRU (RLRU),

which holds better performance than random replacement without
sacrificing the victim’s security.

In RLRU, we only track the ordering of m < w newest lines (in
LRU order) among w total lines in an LLC set. We refer to these m
lines as the active group. For the oldest (w—m) lines (inactive group),
we use uniformly random eviction. The value m parameterizes
RLRU between LRU (m = w) and total random replacement (m =
0). In RLRU, replacement state leakage is only possible when the
victim’s line is brought into/changed inside the active group. Hence,
in IVcache we pin the victim’s lines to the inactive group, preventing
leakage.

When a victim’s access hits in LLC, no replacement state change
will be triggered to the target line, i.e. this line stays in the inactive
group. This makes RLRU safe since whenever there’s eviction, the
eviction target is always randomly selected from the inactive group,
and this selection is not related to the victim’s previous behavior.
When a victim’s access misses in LLC, if the target line is brought
into LLC, we force it into the inactive group. Note that this will not
cause eviction and leak information since it only happens when
the set is not full. (when the set is full, the LLC fill is bypassed
according to Section 3.2.1).

When there is a non-victim LLC access, the replacement state
update is similar with normal LRU: the LRU ordering of the active
group is updated, and the target line is brought into the active group
if not already present. This action may cause the oldest active line
to be moved to the inactive group (which may further trigger an
inactive group eviction)?.

3.3 Keeping read-only copies in private cache

While our self-eviction and bypass mechanisms can effectively pro-
tect the victim from Prime+Probe, the victim tends to lose cache
occupancy. With self-eviction, the victim owns fewer lines (over
time) in each LLC set: he cannot obtain a higher residency per-
centage than he currently has, but his entries may be evicted by
contending SDs, lowering his residency percentage.

15

I Baseline [l 1Vcache|

1.0

0.5

L1 hit rate

0.0

xz specd mcf leela imagk xalan blend gcc bwvs I|bm

Figure 2: IVcache’s effect on the victim’s private cache hit
rate for different victim benchmarks (shown in X-axis).

Consequently, once the victim is completely evicted from an
LLC set, the bypass mechanism is triggered, this LLC set will never
be filled again, and the victim enters permanent starvation in both
LLC and the private cache (due to cache inclusion). As a result,
the victim’s private cache hit rate sharply decreases when using
IVcache, which significantly degrades performance. To confirm this,
we test IVcache with SPEC2017 benchmarks in a 2-core system;
for each experiment, we run 2 benchmarks, setting one to be the
victim. As shown in Figure 2, compared to the baseline insecure

2We evict from the inactive group on each non-victim LLC miss, evicting dummy lines
if necessary, to prevent probabilistic Prime+Probe attacks.

cache, IVcache degrades the victim’s hit rate by at best, 20%, and at
worst, 70%.

To recover the victim’s performance, we must relax the bypass
mechanism to allow some private cache fills but still keep the victim
invisible to the attacker. Our design is to still fill the private
cache, when LLC needs to be bypassed. This can help recover
some private cache hit rate, even when the victim loses the LLC
occupancy. However, filling the private cache but not LLC violates
cache inclusion policy and thus creates coherence problems. To
avoid this and simplify the design, we fill the private cache with
just a read-only copy when LLC is bypassed. Then we only require
some small additional logic in cache, as well as one fixed-size record
buffer per victim (protected SD) near LLC. Each entry of the record
buffer (RB) records an address of the cache line that is in private
caches but not LLC and the corresponding ids of the private caches
that have a copy of this line.

When a victim’s access bypasses LLC, the victim’s RB is checked:
if there is an available slot, the cache line address will be recorded,
and the requesting private cache is filled with a read-only copys; if
the buffer is full, this access will bypass the private cache, and the
data is sent directly to CPU.

For correctness, if line [(a line in the private cache) is recorded
in the RB3, a read access to this line can hit the read-only copy in
the private cache. However, if there is a write to line [, our updated
policy takes the following actions: (1) invalidate the copies of this
line in all the private caches; (2) send message to LLC to reset the
corresponding entry in the RB; (3) forward the write to LLC and
LLC will handle the write securely as discussed before. A recorded
line may have read-only copies in multiple private caches when it
is a shared line among processes in the same SD. When a protected
process misses in the private cache and LLC, LLC will first check
this SD’s RB for the requesting address. If found, LLC will add the id
of the requesting private cache to the corresponding RB entry, and
a copy of this line will be filled into the requesting private cache; if
not, a memory access will be generated.

3.4 LLC active invalidation

Those read-only copies in private caches can only serve reads but
not writes. When the victim is bypassing an LLC set, all the writes
to this set need to go directly to memory, which can significantly
hurt performance. To solve this problem, we need to ensure that
when the victim is starving in an LLC set, the victim is able to
recover entries and leave the starvation.

In IVcache, the victim’s starvation occurs because cache is reac-
tive. A cache line is evicted only when a new access causes replace-
ment or the CPU flushes/invalidates the line. Thus, for IVcache,
once the victim does not own any lines in an LLC set (reaches
bypass state), it is rare for the victim to recover entries (e.g., due to
other users’ entries being flushed).

Thus, we propose to actively invalidate a line from the inac-
tive group in an LLC set per c cycles, writing it back to memory
if necessary. In this way, we actively give the victim a chance to
recover some LLC occupancy, helping it quit the starvation and
improve performance. The choice of c is left for the OS; when there
are more users claiming to be a victim in the system, ¢ should be

3We mark all the recorded private cache lines. This will be discussed in Section 3.5

Table 1: Experiment Configuration.

Parameter Description
ISA X86_64
Processor type 8-way out-of-order, no SMT, 2.0GHz
128 ROB entries, 32 load store queue entries
32kB, 64B line, 8-way associative
32kB, 64B line, 8-way associative
2MB bank per core, 64B line, 16-way associative
LRU, Directory-based MESI Coherence Protocol
8GB, 1 channel, 8 ranks, 8 banks
Stride prefetcher

L1-Icache, private
LI-Dcache, private
L2 cache, shared
Cache polices
Memory
Hardware prefetcher

set to be shorter. The OS could also increase ¢ temporarily when
a victim is joining the system to make some LLC space for it (if
the victim’s joining is not considered a leakage). Note that similar
ideas have been proposed before (e.g., evicts dirty lines early) for
improving performance. With a proper c, this design will not hurt
non-victim users’ performance.

3.5 Storage Overhead

IVcache only requires negligible extra storage in cache: first of
all, for each cache line in private caches, 1 bit is needed to track
whether this line is a read-only copy or not. Besides, we also need
to track the owner SD of each line in LLC to know if it belongs to a
victim. However, there can be many SDs running in the same time,
causing the SD id space to be relatively large. This can make it very
expensive to record the owner’s id of each cache line. Therefore, in
IVcache, we limit the number of victims running in the system. An
extra storage called id buffer is added near LLC to record the SD id
of each victim. By limiting the number of victims, we only need to
add several 1-bit flags in each cache line, and each flag is mapped
to an entry in the id buffer, instead of storing SD ids in each line.
We leave the quantitative limitation of victims configurable to the
processor designer.

As mentioned, one RB is required for each victim. From the result
of the sensitivity study on the buffer size, giving 40 entries for each
victim is enough for keeping relatively good performance. Then
the storage of the RBs is less than 1% of LLC, when the quantitative
limitation of victims is set to be the number of physical cores.

Algorithm 1: Square-and-Multiply exponentiation

Input: base b, modulo m, exponent e = (ep,_1...€9)2
Output: b¢ mod m
re—1
fori=n-1;i >=0;i——do
r— r? mod n
if e; == 1then
L r< r+b mod n

return r

4 EVALUATION

4.1 Configuration

To evaluate IVcache, we modify the Gem5 [2] cycle-level full-system
simulator. The system setup and the baseline cache parameters are
shown in Table 1. Table 2 shows the related parameters of IVcache
that are used in our evaluation. These parameters are the optimized
ones from experimental results.

4.2 Defending real-world attacks

To evaluate the security of IVcache, we test it against a real-world
Prime+Probe attack on GnuPG. We did not run the LRU attack

O 110

o 1 victim 2 victims 4 victims
o 105

@

N0

]

€ 095 I I |
=

o

2 0.90

A \" X
\\0\ & ‘60 & 4 R @ © o & q‘)@\\ﬁ @\ﬂ'@& 6\‘* <

(a) Normalized IPC of 4-core systems

R qq‘(\d} *'L R

1victim 8 victims

O Beee® LN o (R 2 e P e ?Sg«\‘*x ‘*'L W o0

(b) Normahzed IPC of 8-core systems

2 victims

Figure 3: Normalized Performance overhead of IVcache when fixing 1, 2, or all running benchmark(s) as the victim(s).

Table 2: IVcache Parameters.

[Record Buffer Entry | Invalidation Rate ¢ | Size of Active Group |
[40 [110 cycles [9 |

because there is no public code base for it and our defense on it is
quite simple.

The square-and-multiply algorithm [7] is found in GnuPG ver-
sion 1.4.13 for multiple ciphers; leaking the exponent e of this
algorithm leaks the decryption key. As shown in Algorithm 1, in
each iteration of the for loop, the executed instruction pattern is
related to one bit of the exponent. When the current bit is 0, the ex-
ecuted instruction pattern is square-reduce; when it’s 1, the pattern
is square-reduce-multiply-reduce. Thus, for different bit values, the
time between two consecutive accesses to the square instruction is
different: if the current bit is 1, the distance is longer than when
the current bit is 0. By tracing the victim’s accesses to the LLC line
that the square instruction is mapped to, the attacker can learn
each bit of the exponent. Since the attacker does not know the
physical address of the square instruction, he needs to trace the
access pattern of each set in LLC to find the set with the access
pattern that is close to the pattern of square instruction fetching.
To achieve this, the attacker primes an LLC set every 5000 cycles (a
time slot).

L |] L
50000 50010 50020 50030 50040 50050 50060
Time Slot
(a) Prime+Probe result on the baseline cache
L] L] L]
50000 50010 50020 50030 50040 50050 50060
Time Slot

(b) Prime+Probe result on IVcache

Figure 4: Prime+Probe attack results.

Figure 4(a) shows a fragment of an LLC set’s access pattern in 60
time slots. This set is the only one whose pattern is similar with the
pattern of square instruction fetching. Each dot represents an access
to this set, detected by the attacker in a time slot. Most distances be-
tween two consecutive dots are either one of two distinct distances,
except two dots. The rectangle highlights an access missed during
the attack; the circled dot is a false access caused by the attack
noise (e.g., OS noise, speculative execution, etc). Noise is usually
eliminated by multiple runs. In this trace, the leaked key pattern is:

1010010(10/01)011, where the parentheses mean uncertainty due to
the noise.

Figure 4(b) shows the result of IVcache. Once the attacker primes
the target LLC set (fully occupies it), the victim will bypass this
set. Thus, the attacker cannot cause conflicts with the victim and
observe the victim’s accesses. The detected spots in the trace are
from the attack noise, as explained earlier.

4.3 Performance evaluation

We also test IVcache’s performance in Gem5. We use 10 SPEC2017
benchmarks that have either high L1 hit rate, low L1 hit rate but high
LLC hit rate, or low L1 and LLC hit rate. In each experiment, we first
run 1 billion instructions to warm up the cache, then we run another
1 billion instructions to collect statistic data. We test IVcache on
4-core and 8-core systems. We run n benchmarks concurrently,
where n is the number of CPU cores. In each test, we fix 1, 2,
or all benchmark(s) as the victim(s). To choose the non-victim
benchmarks, we randomly select 10 combinations so that the total
number of running benchmarks is the core size, n. For example,
on an 8-core system with 2 victims, say mcf and gcc, we run 10
tests where the other 6 benchmarks are randomly selected. Thus,
in Figure 3, the bars are averages among the 10 tests; each group
of bars refers to fixed victim(s), shown in the X-axis. We run each
victim benchmark in a different protected SD, and run all the non-
victim benchmarks in one unprotected SD. Figure 3 shows the
performance of the victim and non-victim benchmarks, normalized
to the baseline insecure cache.

As shown in Figure 3, IVcache has good performance in terms
of IPC, giving very little performance penalty to victims and little
performance benefit to other benchmarks. The max performance
penalty is only 7.8% for 4-core systems, and 8.6% for 8-core systems,
and the average is only 3.9% for 4-core systems, and 4.4% for 8-
core systems. cactuBSSN and mcf have the worst performance, as
a victim. This is because these workloads have relatively lower L1
cache hit rate; their performance highly relies on LLC utilization.
However, as our optimization method actively makes LLC space
for the victims, the overheads still stay acceptable. IVcache shows
very subtle overhead when all the SDs on the system are victims.
This is because 1) in this case all the SDs contend for LLC resource
in a relatively balanced way, maintaining high LLC performance,
and 2) the utilization of RBs helps keeping high L1 cache hit rate.

Figure 5 (left) shows the average normalized L1 cache hit rate in
different systems. Comparing Figure 5 (left) with Figure 2, we see
that our performance optimizations, keeping read-only copy and
active invalidation, can almost recover victims’ L1 cache hit rate.
This is very important for IVcache: in a normal inclusive cache, after
missing in L1 cache, the victim’s access still has a high probability

12

=
[N}

1.1

N
HN

Normalized L1 hit rate
5
Normalized LLC MPKI

s &

0.8- 0.8-

1v4c 2v4c 4vac 1v8c 2v8c 8v8c 1v4c 2v4c 4vac 1vBc 2v8c 8v8c

Figure 5: Average cache performance. N;VN;C means the
systems with Nj victim(s) and N cores.

to hit in LLC. However, in IVcache, if LLC is bypassed, the access
will go directly to memory, which results in over 100 times higher
latency than hitting in L1 cache. Additionally, IVcache barely affects
the L1 cache hit rate of unprotected benchmarks.

IVcache also affects the LLC performance in two ways: (1) self-
eviction and bypass mechanisms increase the victim’s LLC misses;
(2) forced victim starvation gives unprotected SDs more chance
to use LLC, reducing their LLC misses. As we can see in Figure 5
(right), although IVcache shows an increase on the LLC MPKI in
each scenario, in most cases this increase is less than 10%. For
all-victim systems, the increase is less than 5%.

4.4 Comparison with DAWG

DAWG is a cache partition design proposed in 2018. DAWG forces
its security mechanism to every SD: it applies way-partitioning
among SDs; given an LLC set, an SD can only use a portion of
it. We modified Gemb5 to evaluate the performance DAWG: as the
associativity of our LLC is 16, we assign every SD 4 ways of each
LLC set in 4-core systems, and 2 ways of each LLC set in 8-core
systems. As shown in Table 3, the performance degradation for
victims in DAWG and IVcache are very close; however, DAWG can
also cause performance overhead for non-victim applications (up
to 5.3%). This unfair overhead is avoided in IVcache.

Table 3: The normalized IPC of DAWG and I'Vcache; for each
N1/Ng2, Nj is the average IPC of the victims, and N is the
average IPC of the non-victim applications.

4-core 8-core
1-V 2-V 4-V 1-V 2-V 8-V
IVcache_avg | 0.961/1.019 | 0.956/1.024 | 0.975 | 0.957/1.024 | 0.945/1.021 | 0.977
IVcache_min | 0.928/1.002 | 0.922/1.000 | 0.968 | 0.914/1.002 | 0.916/1.001 | 0.960
DAWG_avg | 0.953/0.959 | 0.956/0.959 | 0.953 | 0.942/0.947 | 0.940/0.947 | 0.945
DAWG_min | 0.858/0.861 | 0.853/0.862 | 0.855 | 0.847/0.854 | 0.844/0.850 | 0.845

4.5 Sensitivity study on record buffer size

To learn how the size of RB affects the victim’s IPC, we choose the
same 10 benchmarks as in Section 4.3, and run each of them on a
4-core system with 3 other non-victim benchmarks. The result is
shown in Figure 6: when each RB has less than 30 entries, increasing
buffer size can clearly benefit the victim’s IPC. However, when it
has over 40 entries, the IPC becomes stable. Thus, we give each RB
40 entries, introducing less than 1% storage overhead to LLC.

5 CONCLUSION

We proposed IVcache, a comprehensive defense mechanism for
both the original LLC attack and the new variant. IVcache makes

I
N
a

1.004

0.754 . //

10 20 30 40 50 60
Record Buffer Size

Figure 6: The normalized IPC with different record buffer
sizes.

Normalized IPC

o
13
=}

the victim’s behavior invisible to attackers by modifying the way
state changes are handled in cache. To make IVcache practical,
we also provided two optimizations. We tested IVcache against
a real-world attack, which showed that IVcache could effectively
defend the attack. We also used SPEC2017 workloads to evaluate
IVcache’s performance degradation. The result showed that IVcache
has negligible performance impact.

6 ACKNOWLEDGMENTS

This work is supported in part by US National Science Foundation
#2011146, #1910413, #1725657, #1738783, and #1718080. The authors
thank the anonymous reviewers for their constructive comments.

REFERENCES

[1] 2017. SPEC CPU 2017, https://www.spec.org/cpu2017.

[2] Nathan Binkert et al. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (08 2011), 1-7.

[3] Thomas Bourgeat et al. 2019. MI6: Secure Enclaves in a Speculative Out-of-Order
Processor. In MICRO °52. 42-56.

[4] Shuwen Deng et al. 2020. A Benchmark Suite for Evaluating Caches’ Vulnerability
to Timing Attacks. In ASPLOS 20. 683-697.

[5] Ghada Dessouky et al. 2020. HybCache: Hybrid Side-Channel-Resilient Caches
for Trusted Execution Environments. In USENIX Security’20. 451-468.

[6] Leonid Domnitser et al. 2012. Non-Monopolizable Caches: Low-Complexity
Mitigation of Cache Side Channel Attacks. ACM Trans. Archit. Code Optim. 8, 4
(2012), 1-21.

[7] Daniel M. Gordon. 1998. A Survey of Fast Exponentiation Methods. J. Algorithms
27,1 (1998), 129-146.

[8] Daniel Gruss et al. 2015. Cache Template Attacks: Automating Attacks on
Inclusive Last-level Caches. In USENIX Security’15. 897-912.

[9] Mehmet Kayaalp et al. 2017. RIC: Relaxed Inclusion Caches for Mitigating LLC
Side-Channel Attacks. In DAC’17. 1-6.

[10] Vladimir Kiriansky et al. 2018. DAWG: A Defense Against Cache Timing Attacks
in Speculative Execution Processors. In MICRO’50. 974-987.

[11] Fangfei Liu et al. 2015. Last-Level Cache Side-Channel Attacks Are Practical. In
S&P’15. 605-622.

[12] Antoon Purnal et al. 2019. Advanced profiling for probabilistic Prime+ Probe
attacks and covert channels in ScatterCache. arXiv preprint arXiv:1908.03383
(2019).

[13] Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In MICRO’51. 775-787.

[14] Zhenghong Wang et al. 2007. New Cache Designs for Thwarting Software
Cache-based Side Channel Attacks. In ISCA’07. 494-505.

[15] Mario Werner et al. 2019. ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization. In USENIX Security’19. 675-692.

[16] Wenjie Xiong et al. 2020. Leaking information through cache LRU states. In
HPCA’20. 139-152.

[17] Mengjia Yan et al. 2017. Secure Hierarchy-Aware Cache Replacement Policy
(SHARP): Defending Against Cache-Based Side Channel Attacks. In ISCA’17.
347-360.

[18] Mengjia Yan et al. 2019. Attack Directories, Not Caches: Side Channel Attacks in
a Non-Inclusive World. In S&P’19. 888-904.

[19] Fan Yao et al. 2018. Are coherence protocol states vulnerable to information
leakage?. In HPCA’18. 168-179.

[20] Yuval Yarom et al. 2014. FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack. In USENIX Security’14. 719-732.

[21] Jiyong Yu et al. 2019. Speculative Taint Tracking (STT): A Comprehensive
Protection for Speculatively Accessed Data. In MICRO’51. 954-968.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 LLC attacks
	2.2 Prior defenses and their limitations

	3 IVcache Design
	3.1 Threat model
	3.2 Basic design
	3.3 Keeping read-only copies in private cache
	3.4 LLC active invalidation
	3.5 Storage Overhead

	4 Evaluation
	4.1 Configuration
	4.2 Defending real-world attacks
	4.3 Performance evaluation
	4.4 Comparison with DAWG
	4.5 Sensitivity study on record buffer size

	5 Conclusion
	6 Acknowledgments
	References

