
1

A Dynamic and Proactive GPU Preemption
Mechanism using Checkpointing

Chen Li, Andrew Zigerelli, Jun Yang, Member, IEEE, Youtao Zhang, Member, IEEE, Sheng Ma, Yang Guo

Abstract—The demand for multitasking GPUs increases when-
ever the GPU may be shared by multiple applications, either spa-
tially or temporally. This requires that GPUs can be preempted
and switch context to a new application while already executing
one. Unlike CPUs, context switching in GPUs is prohibitively
expensive due to the large context states to swap out. There
have been a number of efforts on reducing the overhead of
preemption, through reducing the context sizes or overlapping
context switching with execution. All those techniques are reactive
approaches, meaning that context switching occurs when the
preemption request arrives.

In this paper, we propose a dynamic and proactive mechanism
to reduce the latency of preemption. We observe that kernel
execution is almost always preceded by known commands in
both CUDA and OpenCL implementations. Hence, a preemption
can be anticipated before the actual request arrives. We study
such lead time and develop a prediction scheme to perform
an early state saving. When the actual preemption is invoked,
an incremental update relative to the previous saved state is
performed, much like the conventional checkpointing mechanism.
Our design can also choose to drain or checkpointing dynamically
and accurately according to the feature of kernels in the runtime.
This design effectively reduces the stall time of the preempting
kernel due to context switching by 58.6%. Moreover, through
careful handling of the saved state, we can also reduce the overall
size of saved state by an average of 23.3%, compared with a full
context switching.

Index Terms—GPU, preemption, checkpointing, runtime selec-
tion, context switch.

I. INTRODUCTION

DUE to their massive parallel processing capability,
GPUs are now seen in various domains such as high-

performance computing, machine learning and scientific com-
puting [1][2][3][4][5][6]. These types of computing are now
often provided as services in data centers or clouds, so that
GPUs can be provided as shared infrastructure to users. Mul-
titasking has become essential for GPUs to support concurrent
services and requests. Some preliminary hardware features for
multitasking are already in-place, such as the Hyper-Q pro-
vided by Nvidia’s Kepler architecture [7], and the command
processor supported by AMD [8][9][10]. While this was a step
in the right direction, much is still needed to be done for true
multitasking support [11][12].

C. Li, S. Ma and Y. Guo are with the College of Computer, National Uni-
versity of Defense Technology, 410073, China (E-mails: lichen@nudt.edu.cn;
masheng@nudt.edu.cn; guoyang@nudt.edu.cn).

A. Zigerelli and J. Yang are with the Department of Electrical and
Computer Engineering, University of Pittsburgh, Pittsburgh PA 15261 (E-
mails:anz37@pitt.edu; juy9@pitt.edu).

Y. Zhang is with the Computer Science Department, University of Pitts-
burgh, Pittsburgh PA 15261 (E-mail: zhangyt@cs.pitt.edu).

Context switching, a technique used in CPUs to support con-
currency [13], has been proposed for GPUs for multitasking
as well [11][14]. CPU processes are relatively lightweight, al-
lowing for a fast context switch and efficient time-multiplexing
of tasks. However, a CUDA context is massive compared to
the CPU [15]. For example, on the GTX980 GPU [16], the
context size can be as large as 256KB for registers and 96KB
shared memory per streaming multiprocessor (SM); the total
context size can be 5664KB for the whole GPU (with 16 SMs).
Saving such large context takes significant memory bandwidth
and severely degrades performance [17][18].

There have been several attempts to reduce the overhead
of context switching for GPUs. The earliest technique lets
context switching occur on a subset of SMs so the remaining
SMs can continue execution [19]. The switching SMs are
completely stalled to perform just context swapping, and
the burden on memory bandwidth remains high. Later, a
partial context switching technique allows TBs in an SM
to continue execution while swapping a particular TB [20],
which maximally overlaps memory accesses, due to context
switching, and kernel execution. This technique was further
enhanced to allow a mix of draining (execute to completion),
flushing (drop execution if idempotent) and switching TBs
within each SM (depending on the deadline of the preemption)
[21]. In parallel with those efforts, a lightweight context switch
scheme was designed for reducing the amount of context
that has to be saved off-chip [18]. All those prior works
perform preemption via a reactive approach, meaning that all
operations are activated upon the arrival of the preemption
request. As a result, the preemption latency remains a threat
to performance if the preempted kernel is not flushed.

In this paper, we propose a dynamic and proactive pre-
emption mechanism, PEP, to reduce preemption latency and
overhead. Through observing the kernel launch process, we
find that the actual execution of a kernel on a GPU is always
preceded by the kernel launch action, and the time from when
a kernel is launched from CPU to the time the kernel starts to
execute on the GPU is in the order of tens of microseconds.
Leveraging such lead time and known operation pattern, we
can anticipate the arrival of a preemption request and proac-
tively prepare for context switching. When the preempting
kernel arrives, the remaining work for completing the context
switching is minimized. Hence, the effective preemption time
is short. The preparation we perform for context switching
utilizes the concept of checkpointing [22][23]. The first base
checkpoint is performed when a preemption is predicted to
occur. Then an incremental checkpoint is performed when the
preempting kernel arrives at the GPU. Saving the incremental

checkpoint takes much less time than saving the full-size
context of a preempted kernel, reducing the effective wait time
of the preempting kernel. On average, the total amount of
state saved is no more than the full context. We also observe
that the context allocated is not completely active during the
TB’s lifetime. Therefore, we set dirty bits for registers to
indicate whether the register is active or not. Only active
registers must be saved, thus reducing the overall size of
saved context significantly. Moreover, we design a dynamic
runtime selection algorithm for preemption decisions. Short
kernels can be preempted by draining, while long kernels
can be preempted by checkpointing (context switching). This
algorithm can achieve both low latency and small overhead.

Our contributions can be summarized as follows:
1) We study the kernel launch process, and observe that the

event of preemption can be predicted.
2) We introduce a proactive preemption mechanism to

reduce the stall time for the preempting kernel due to
context switching. With proactive checkpointing, when
preemption finally occurs, only a small subset of dirty
context must be saved.

3) We use a simple dirty data-saving technique to reduce
context size, which reduces the unnecessary context
saving.

4) We develop a more precise estimation on TB draining
time and context switch time, and design a dynamic
runtime selection algorithm for preemption decisions.
We can preempt both short and long kernels with low
latency and small overhead.

We evaluate PEP and compare with previous best-effort
preemption work Chimera [21] on several types of bench-
marks [24][25][26][27]. Our experimental results show that
we can reduce the average preemption latency from 8.9µs to
3.6µs, compared with previous best-effort preemption work,
Chimera [21]. We also reduce the total state that needs to
be saved by 16.1% compared to saving the full context size,
using only simple context size reduction techniques. The total
overhead, average switch time per TB, of PEP is 6.3% lower
than Chimera.

II. BACKGROUND AND MOTIVATION

In this section, we provide a brief description of the baseline
GPU architecture, including the execution model. The baseline
models a Nvidia discrete GPU architecture. Hence, we will use
Nvidia/CUDA terminology throughout the paper. However, the
ideas also apply to GPUs from other vendors [28][29][30][31].
We also discuss checkpointing, which plays a key role in our
method.

A. Baseline Architecture

1) GPU Program Execution: Typical GPU programs con-
tain two parts of code: host code that runs on the CPU
and device code (kernels) that runs on the GPU. Kernels
are executed in a SIMT fashion (single instruction, multiple
threads). A kernel is executed by running multiple threads in
parallel on the GPU. Threads are grouped into thread blocks
(TBs) by the programmer.

1 __global__ void axa(double a, double *x){
2 int i = blockIdx.x*blockDim.x+threadIdx.x;
3 x[i] = a*x[i] + a;
4 }
5
6 void main(){
7 int N = 1048576;
8 double *x, *d_x;
9 x = (double*)malloc(N*sizeof(double));

10 for (int i = 0; i < N; i++) {
11 x[i] = 3.0;
12 }
13 cudaMalloc(&d_x, N*sizeof(double));
14 cudaMemcpy(d_x, x, N*sizeof(double),

cudaMemcpyHostToDevice);
15 axa<<<N/256, 256>>>(3.0, d_x);
16 cudaMemcpy(x, d_x, N*sizeof(double),

cudaMemcpyDeviceToHost);
17 std::cout<<"Output:"<<x<<std::endl;
18 cudaFree(d_x);
19 free(x);
20 }

Fig. 1: A Simple CUDA Program

Nvidia’s CUDA programming model for GPUs is exposed
to the programmer through CUDA C, an extension to the C
language, and runtime libraries. Figure 1 is a sample CUDA
code. The typical sequence of operations for a CUDA C
program includes:

1) Declare and allocate host and device memory (Line 8-
13).

2) Migrate data from the host to the device (Line 14).
3) Launch the kernel(s). Here the programmer launched

N/256 TBs, each containing 256 threads (Line 15).
4) Migrate results from the device to the host (Line 16).
5) Release the memory space (Line 18-19).

TBs are considered independent from each other and are
dispatched to SMs separately. The number of TBs that may
execute concurrently is limited by the device’s resources (reg-
isters, shared memory, and thread number), which is known at
compile time. Most prior proposed preemption schemes work
at the TB granularity level, using the resource information to
make preemption decisions.

2) GPU Architecture: Figure 2 is the baseline GPU archi-
tecture, which we will refer to throughout the paper. A GPU
program receives operation commands from the host CPU
during execution. The user-space runtime engine transforms
API calls to control data operations and kernel launches[32].
The GPU device driver sends these operation commands to the
queues in the stream manager. The stream manager manages
multiple streams using software queues; all commands in the
same stream execute serially. Typically, the CPU first declares
and allocates its memory and then invokes cudaMalloc to
allocate the global memory on the GPU. Then, a cudaMemcpy
(HtD) call moves the data from the host to the device. Once
all data is transferred, the stream manager can launch the
kernel by passing kernel information (such as dimension con-
figurations and entry PC address) to the Kernel Management

2

SM SM SM

Pending Kernel Pool

CPU
Memory

Warp
Scheduler

Registers
Shared

Memory

SP

Score
board

Applications

GPU

PCI Express Bus

Host
CPU

CTA Scheduler

Global
Memory

Global
Memory

Global
Memory

Global
Memory

Global
Memory

Global
Memory

Global
Memory

Global
Memory

Interconnect Network

KMU

KDU

Stream
Manager

SP SP

Software

Hardware

Bridge

CudaMalloc

CudaFree

CudaMemcpy
HtD

CudaLaunch

CudaMemcpy
DtH

CUDA API

U
se

r-
Sp

ac
e

R
u

n
ti

m
e

D
ri

ve
r

O
p

er
at

io
n

co

m
m

an
d

s

Fig. 2: Baseline GPU Architecture.

Unit (KMU). When all the information is ready, the kernel
requests SM resources. If there are not enough resources, the
kernel waits in the kernel pending pool. If the waiting kernel
has higher priority than executing kernels, it may preempt
executing TBs in an SM to obtain resources. Otherwise, it
waits for previous kernels to finish.

Once the kernel is ready for execution, it is transferred to the
Kernel Distributor Unit (KDU). Its TBs are then dispatched to
SMs by the CTA Scheduler. The maximum number of TBs that
can be executed on an SM depends on resource constraints,
including the number of resident TBs, threads, registers and
shared memory space. During the execution of a kernel in
the SM, TBs are split into warps which are groups of 32
threads. An SM has one or more warp schedulers that choose
which warp to issue. Each warp scheduler controls 32 stream
processors (SPs) in GTX980 GPU architecture [16]; each SP
computes a single thread. The scheduler switches among warps
if a current warp is stalled by a memory access or other long
operations. There is no overhead for switching among warps
in an SM, as all warps’ contexts are already in the registers
and shared memory. As a result, the GPU can hide the delay
of stalled warps, improving overall performance.

B. Prior Preemption Methods

When preemption occurs, each SM can operate indepen-
dently, meaning that some may be preempted while others may
continue to execute. Preempted SMs need to save their context
to the global memory. An SM’s context is its execution state,
which includes the SIMT stack, registers and shared memory.
The SIMT stack stores the thread execution information, such
as the program counters and active masks (used for branch
divergence). Compared with the size of the registers and shared

memory, the SIMT stack size is negligible, so we ignore
it for the remainder of this paper. A TB owns its portion
of SM’s resources while it is active; it remains active until
all its threads complete. However, during its own execution,
there may arrive a new kernel that has a strict deadline to
meet. The new kernel may not be able to wait for the current
kernel to finish, as that may violate the deadline. Therefore,
we need to preempt some active TBs to make room for the
new kernel’s TBs. However, as the context of TBs are typically
large, saving them to the global memory incurs high overhead,
so the preemption latency is prohibitively long. As shown in
Table I, the preemption latency (Avg Switch Time) can be over
20µs. This latency could pose threat to meeting the deadline
of the incoming kernel.

To achieve a lower preemption latency, Park et al. proposed
one technique that simply flushes a TB [21]. In this method,
the SM drops the TB’s context without saving it and directly
executes new TBs from the higher priority kernel. After that
kernel is finished, the SM re-executes the dropped TB from
the beginning. Flushing has almost no preemption latency.
However, not all kernels can be flushed at any point in execu-
tion. Flushing requires the kernel to be idempotent, meaning
the kernel will generate the same result independent of how
many times it is executed, i.e. there are no atomic operations
nor global memory writes before the point of flushing. Most
applications are not idempotent (only 30% in Rodinia) [24].
Idempotence may be relaxed, but requires much bookkeeping
overhead. In either case, flushing may have high overhead,
which is proportional to the number of instructions that are
re-executed.

To achieve low preemption overhead, SM draining was
proposed, where the executing TB will run till completion
before new TB from the incoming kernel starts [19], [21]. This
method does not require any context saving so the preemption
overhead is minimized. However, the preemption latency can
be very high because the executing kernel may be of long
latency. This could lead to deadline violation for the incoming
kernel. Table I includes the execution time of a TB for various
kernels we measured. As we can see, some TBs (e.g. Kmeans)
have an execution time of nearly 1ms. Therefore, SM draining
is best suited for short-latency TBs.

Lin et al. proposed a lightweight context switching to reduce
context size that need to go off-chip [18]. Those techniques
include in-place context switching, which saves context in
unused registers and shared memory, dead register removal,
which reduces the context size, and register value compression.
We also leverage the in-place context switching in PEP.
However, incorporating the liveness information requires a
liveness bit for each register per instructions, which implies
a large liveness table stored in hardware. To reduce this
large overhead, preemption is allowed only at certain points
of a kernel to reduce the storage requirement for liveness
information. Further, the register value compression algorithm
also introduces additional hardware overhead [33].

C. Checkpointing in GPUs
Checkpointing is to save the state of a running process so

that it may be resumed later in the event of faults. Check-

3

0

0.4

0.8

1.2

BS CP GM KS LBM MRI PF SG STN
or

m
al

iz
ed

 P
re

em
pt

io
n

La
te

nc
y

Chimera Chimera+dirty PEP PEP + In-place

0

5

10

15

20

25

Pr
ee

m
pt

io
n

La
te

nc
y

(u
s)

Chimera Chimera+dirty PEP PEP + In-place

0
5
10
15
20
25
30
35

0
1
2
3
4
5
6

0 2 4 6 8 10 D
ra

in
 T

im
e

pe
r T

B
 (u

s)

Sw
itc

h
Ti

m
e

pe
r T

B
 (u

s)

TBs Switching

Switch Time Drain Time

0
5

10
15
20
25
30
35

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
av

in
g

La
te

nc
y(

us
)

Chimera GPU-PCP GPU-PCP + In-place

Fig. 3: Switch Time and Drain Time for LBM (9 TBs per
SM).

pointing in GPUs has been implemented in software [34][35].
Even though checkpoints allow a process to resume, they
are not directly suitable for preemption as their purpose for
checkpointing is for fault tolerance. The device running a
process may fail, so it is necessary to save its state on another
device. This is a long latency operation, but the overhead is
acceptable compared to the work lost in case of a fault. For
preemption, our goal is a reasonable response time for the
preempting kernel as it may need to meet a close deadline.
Thus, we save our context to the device’s global memory.
Checkpointing is used to shorten the latency of a future
context switch. To introduce checkpointing into preemption,
it is important to limit the number of checkpoints, as another
goal of ours is to reduce the overhead in preemption.

D. Motivation

Chimera [21] uses a selection algorithm to choose the
preemption methods for different TBs during a preemption
request; the selection is based on the tradeoffs of the three
methods. Chimera estimates each technique’s preemption la-
tency and overhead to choose the most effective preemption
method. Consequently, different TBs in the SM may be
preempted with different preemption techniques.

However we observe that draining and switching compete
for the global memory bandwidth. For example, in Figure 3,
the memory intensive application LBM has such a conflict.
LBM has 9 TBs per SM; we show all 10 possible combinations
of switching and draining. If all TBs are switched one by one,
there is no competition. In the case where 1 TB is switched
and all others are drained, both the drain time and the switch
time are longer than the situation in which 8 TBs are switched
and 1 TB is drained. This is because the 1 switching TB
competes with the other 8 draining TBs. Therefore, we find
that bandwidth competition causes Chimera’s estimation to
be inaccurate. In the case where 1 TB is drained, there is
not bandwidth competition because TBs switch one at a time.
Also, the draining TB has no competition for execution units.
Thus, the IPC may be affected by the number of TBs draining.

We also observe that the decision making between switching
and draining can usually be the same for all TBs. Table I shows
that the range of TB execution times is much larger than the

range of switch times. There may be a wide gap between the
drain time and the switch time for long kernels. Hence, the
best way for preempting short kernels is to drain all executing
TBs, which can meet the deadline with almost zero overhead.
However, we must context switch for long kernels if they are
not idempotent.

The total context size of current GPU [36] is 352KB per
SM (256KB for registers and 96KB for shared memory).
To transfer this context to global memory, it takes at least
15µs, assuming the bandwidth is fully utilized. As all previous
techniques are reactive, they must take at least this amount
of time to switch. To further reduce the preemption time for
context switching, we need not only to reduce the context size
but also preempt with a proactive technique.

Checkpointing is a proactive mechanism widely used in
fault tolerance; it saves the state of the running process
periodically. Similarly, we can also save the context of the
running TBs for preemption. To implement proactive pre-
emption, we introduce PEP, our checkpoint method. We can
save a checkpoint context before preemption, and when the
actual preemption is invoked, we perform an incremental
update relative to the checkpoint, which shortens the actual
preemption latency.

III. DESIGN

In this section, we first give an overview of our proactive
preemption design. Then we demonstrate the feasibility of
predicting kernel launch time and estimating preemption time.
Finally, we propose the designs of our checkpoint method and
runtime selection algorithm.

A. Overview

Our method is based on the observation that context switch-
ing may be used at any time during a TB’s execution phase,
as long as the latency and overhead are acceptable. To reduce
the latency and overhead, we will reduce the context size. To
reduce the preemption latency, we can context switch earlier.
We also use draining in appropriate cases, as there is almost
no overhead.

To reduce the context size, we use a dirty bit to indicate
whether a register is active or not. Thus, we never save context
that is unused or has been released. We also leverage in-
place context saving proposed by Lin et al.[18], which allows
context to be saved in idle local memory. In this method,
no data transfer to global memory through the interconnect
network is required.

For proactive context switching, we use checkpointing. Our
algorithm can decide to save the context at a checkpoint to the
global memory, prior to preemption. Then, we continue exe-
cution until the preemption occurs. At this moment, we only
need to save an incremental update to the base checkpoint. If
a TB finishes execution after the base checkpoint but before
a preemption request, we just release this base context. This
method achieves much lower overhead than a full context save.

To do checkpointing for preemption, we must limit the
number of checkpoints; if we checkpoint too often, the
overhead may be unacceptable. Moreover, if a TB finishes

4

Benchmarks Source Kernel
Avg

Launch
Time

Avg TB
Execution

Time

Avg
Switch
Time

Context Size
Per TB

TB num
Per SM

CUTCP(CP) Parboil[25] cuda cutoff
potential 5.8µs 516.2µs 10.1µs 16.5KB 8

LBM Parboil[25] performStream
Collide kernel 21.8µs 31.7µs 20.9µs 18KB 14

MRI-Q(MRI) Parboil[25] ComputeQ GPU 10.4µs 865.2µs 11.6µs 18KB 8

STENCIL(ST) Parboil[25] block2D hybrid
coarsen 4.5µs 41.3µs 4.2µs 12.5KB 4

STREAM
CLUSTER(SC) Parboil[25] kernel

compute cost 6.7µs 605.6µs 8.3µs 24KB 4

GEMM(GM) Darknet[27] matrixMulCUDA 23.4µs 193.6µs 17.9µs 28KB 8
BLACK

SCHOLES(BS)
Nvidia

SDK[26] BlackScholarGPU 3.4µs 387.5µs 16.7µs 12.5KB 16

KMEANS(KS) Rodinia[24] invert mapping 29.7µs 984.7µs 9µs 10KB 8
PATHFINDER(PF) Rodinia[24] dynproc kernel 11.3µs 24.2µs 11.6µs 18KB 8
SRAD V1(SRAD1) Rodinia[24] extract 5.2µs 1.8µs 4µs 12KB 4
SRAD V2(SRAD2) Rodinia srad cuda 15µs 11.5µs 16.4µs 25KB 8
SRAD V1(SRAD3) Rodinia[24] srad 5.2µs 7.9µs 7.8µs 24KB 4
HOTSPOT(HS) Rodinia calculate temp 33.3µs 4.5µs 7.7µs 38KB 3
LUD Rodinia[24] lud internal 4.4µs 5.3µs 10.5µs 16KB 8

BACKPROP(BP) Rodinia[24] bpnn
layerforward 16.7µs 4.7µs 2µs 12KB 1

BACKPROP(BP2) Rodinia[24] bpnn adjust
weights 16.7µs 1.5µs 1.2µs 22KB 1

TABLE I: Benchmarks Time Comparison.

before preemption but after some checkpoints, the previous
checkpoints are wasteful and contribute to overhead. For these
reasons, it is necessary to predict which TBs will still be
executing at the preemption time point. Then, we can only
save checkpoints for those TBs. We observe that the CUDA
API call cudaLaunch is always the last software operation
before a new kernel is launched. After this call, a kernel launch
command is sent to the stream manager. If the command is at
the head of the stream queue, the kernel information will be
passed to the KMU and start requesting SM resources. Hence,
we find that the kernel launch time can be predicted.

Our checkpointing method is suitable for long kernels. For
those short kernels, we still perform draining instead of context
switching. To utilize both preemption techniques, we estimate
both draining and switching times to select the preemption
method during runtime.

B. Prediction and Estimation

The prediction of kernel launch time and estimation of
draining and switching time are key components of PEP.
Through our studies on a collection of various applications,
we find that there are three timings that are critical to the
success of our prediction scheme: kernel launch time, context
switch time and TB execution time. Kernel launch time is what
we use to predict when the preemption will actually need to
occur. Context switch time and TB execution time are used to
determine if checkpointing or draining need to be performed.
Table I shows our measurements for the three timings.

1) Prediction: From Table I we have two important obser-
vations. The first important observation we make is that the
kernel launch time and the context switch time (close to the
latency of checkpointing) are on the same order of magnitude.
This implies that if we start checkpointing at the time of
prediction, then when preemption request actually occurred,

we would have just finished saving necessary context. The
second observation is that both those timings have much
smaller variation than the TB execution time. For long-running
TBs, the inaccuracy in prediction would not make a differ-
ence nor impact the decision on checkpointing or draining.
For short-running TBs, the decision is most likely draining,
so misprediction would not have much impact on the final
overhead or latency either. We will elaborate those timings in
this section.

As already mentioned, we must be able to predict when
preemption occurs in order not to wastefully checkpoint. A
CUDA application typically has five steps, which can be
marked by five CUDA API calls: cudaMalloc, cudaMemcpy
(H2D), cudaLaunch, cudaMemcpy (D2H), and cudaFree. The
cudaLaunch call triggers the kernel launch action. It passes
kernel information to the GPU, including TB organization
information (grid and block dimensions) and the amount
of shared memory allocated. We tested on a large number
of applications and observed that the kernel launch time is
typically in the order of tens of microseconds. Table I shows
that, for the set of applications we examined, the kernel launch
time ranges from 3.3µs to 33.3µs. This is the time from when
cudaLaunch is called to the time that kernel information arrives
to the KMU, assuming no queuing in the stream manager.
The high kernel launching time includes the software API
call and copying the kernel code itself as well as copying
the arguments to the pending kernel pool in the GPU [37].
Hence, the overhead can vary quite a bit.

In addition, the average switch time per TB is from 1µs to
20µs, which depends on the context size per TB. From Table I
we know that the kernel launch time and the switch time are
in the same order of magnitude. Approximately, the length of
context switch time can be similar to the kernel launch time.
This means that when the first base checkpoint is finished, the

5

preemption probably has occurred. In this case, we can release
resources immediately and make room for new kernels. Our
design does not require a very precise prediction for kernel
launch time. This is because if checkpoint finishes before
the actual preemption request arrives, the SM can continue
executing the TB until the preemption starts and save the dirty
context only.

We also find that the average TB execution time ranges
from 1.5µs to more than 900µs from Table I. The execution
time varies a lot depending on the length of the kernel. Short
kernels’ TBs will be drained, which costs almost no overhead
and does not affect meeting the deadline, as the draining
time is short. Only long kernels’ TBs will be more likely
to perform context switch. As those long TB execution time
can be as long as hundreds of microseconds, it is easy for
us to roughly predict whether the TB will be preempted or
not at the time cudaLaunch is called. We can set a certain
kernel launch time such as 20µs for prediction purpose. When
a cudaLaunch is called by the GPU driver, we compare the
predicted kernel launch time with the remaining TB execution
time for each TB. If predicted kernel launch time is smaller
than the remaining TB execution time, then we can start
checkpointing right away. Otherwise, we will drain the TB.
Note that the variation of the kernel launch time is relatively
small, compared with TB execution time. Hence, even if the
true kernel launch time is away from 20µs, it is unlikely to
cause a different preemption decision.

In reality, the kernel launch may be delayed due to queuing
time in the stream manager; for example, a preceding long
memory copy operation may not yet be finished. However,
this delay is not problematic for our algorithm. In the case
where the average TB Execution time is much larger than
launch time, such as for CUTCP, the delay is not likely to be
large enough for the TB to finish execution, so our checkpoint
scheme is not wasteful. In the case where the average TB
execution time is similar to the launch time, we will choose
to drain, so the delay definitely does not affect checkpointing
overhead.

Our prediction scheme will ensure that the number of
checkpointing performed is no more than two. The base
checkpointing is triggered by the cudaLaunch call and the
incremental checkpointing is triggered by the preemption
request. Therefore, the checkpoint overhead can be limited.

2) Estimation: We must estimate the context switch time
and the drain time in order to select the preemption method,
either checkpointing or draining. We also need the estimation
to predict if the preemption occurs within the current TB
or not. Chimera[21] uses time estimation to compare the
throughput overheads between different preemption methods.
Chimera estimates the drain time for a TB as the product of
the remaining instructions and the previous CPI of the TB;
the context switch time is the context size of the TB divided
by the global memory bandwidth shared by the SM. However,
the TB-based estimation is inaccurate in some cases; further,
it is inestimable when context switching overlaps draining. As
shown in Figure 4, when half of TBs are draining and others
are switching at the same time, the estimations are quite off.
This is because fewer draining TBs means fewer conflicts on

0

0.2

0.4

0.6

0.8

1

Drain Single Checkpoint Two Checkpoints
0

0.5

1

1.5

2

CP HT LBM KS MRI KN BS

N
or

m
al

iz
ed

 D
ra

in
 T

im
e

Chimera Est. Eval. 50% Drain &50% Switch Eval. All Drain

0
1
2
3
4
5
6

8 16 24 32

N
or

m
al

iz
ed

pr

ee
m

pt
io

n
La

te
nc

y

SMs

Fig. 4: Drain Time Estimated by Chimera.

SPs and more conflicts on the bandwidth of the global memory
with switching TBs.

Although Chimera’s estimation for draining all TBs is much
better, there is still significant inaccuracy in certain cases. For
example, applications like LBM and KS have multiple phases;
their CPI is time-varying. In Figure 4, KS has very low CPI
at the beginning, but its CPI increases during execution. Thus,
the estimation time is far off from the evaluated time. In
addition, the switch time estimation only considers a single TB
by itself when making the preemption decision. For example,
if 3 similar TBs are switched, the context size is 3 times as
high; thus the actual total switch time can be 3 times larger
than Chimera’s per TB estimation.

From Table I, there is a wide gap between TB execution
time and TB switch time. In most applications, we will choose
to drain all TBs or switch all TBs. Hence, the drain time and
context switch time are estimable; we do not need to worry
about switching/draining interference. To avoid the impact
from the CPI time-variance, we profile previous TBs in the
runtime. As the instructions are the same between different
TBs in the same kernel, the TB execution time is stable. Thus,
we can use average TB execution time (profiled) minus the
already executed time to obtain the remaining TB execution
time. However, if there is no profiled TB execution time
available when we need to estimate, we can use Chimera’s
estimation. To estimate context switching time, we always
use the worst case estimation, which estimates the time for
switching all the TBs in an SM. As the context switch time
has a small range compared to execution time, we are safe but
not too conservative in using the worst case estimate.

C. Context Reduction

Traditional context switching saves all allocated context to
global memory. However, the active context at a particular
point in time is always smaller than its allocated size, allowing
us to save less. We track the active context using dirty bits.
However, TBs mainly have two sources of context, registers
and shared memory, which have different lifetimes. Shared
memory is private per TB. As it is managed by the program-
mer, we consider its lifetime to be the whole lifetime of the
TB. On the other hand, registers are allocated per thread, and
threads are executed in a warp group. Thus, a register’s lifetime

6

0

0.4

0.8

1.2

BS CP GM KS LBM MRI PF SG STN
or

m
al

iz
ed

 P
re

em
pt

io
n

La
te

nc
y

Chimera Chimera+dirty PEP PEP + In-place

0

5

10

15

20

25

Pr
ee

m
pt

io
n

La
te

nc
y

(u
s)

Chimera Chimera+dirty PEP PEP + In-place

0
5
10
15
20
25
30
35

0
1
2
3
4
5
6

0 2 4 6 8 10 D
ra

in
 T

im
e

pe
r T

B
 (u

s)

Sw
itc

h
Ti

m
e

pe
r T

B
 (u

s)

TBs Switching

Switch Time Drain Time

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

W
ar

p
In

st
ru

ct
io

n
C

ou
nt

s(
K

)

N
or

m
al

iz
ed

 A
llo

ca
te

d
R

eg
is

te
rs Initial (25%) Dirty1 (50%)

Dirty2 (75%) Warp Instructions

Fig. 5: Normalized Dirty Registers. Initial: 25% of the
TB progress; Dirty1(Initial): 50% of the TB progress;
Dirty2(Initial): 75% of the TB progress.

is per warp. When a warp is finished, all registers allocated
for these threads are released. To track register use, we set a
dirty bit once a register is written to in the writeback stage,
and we unset if we checkpoint, or whenever the warp finishes.
We can similarly track shared memory writes.

Figure 5 shows dirty register size for applications, normal-
ized by allocated size. We collect the dirty register percentage
for different execution progress points. Our initial collection
is at 25% execution. Dirty1 and Dirty2 are the percentage of
dirty registers at 50% and 75% of the TB execution progress,
relative to the initial collection. For the kernels with a large
number of warp instructions (MRI through PF), Dirty1 and
Dirty2 are reduced by 38.2% and 48%, on average, from the
initial state. In general, Dirty2 has less dirty registers than
the Dirty1 because many warps are finished at the 75% point;
these warps’ registers have been released. We find that this
dirty analysis is enough; we do not use a compiler liveness
analysis nor register value compression in this paper.

We also leverage in-place context saving [18] at the in-
cremental checkpoint. In-place context switching can be used
because the new kernel can use free space in the SM that
the old kernel did not use. This further reduces the actual
preemption time.

D. Proactive Preemption Design

1) Checkpoint Saving: Checkpointing will only be used for
long running preempted kernels, as their drain times are too
long. When a kernel is running on the SMs, if cudaLaunch is
called by the GPU driver, we know that a new kernel will be
transferred to the GPU within several to tens of microseconds.
At this moment, the GPU driver sends a signal to activate the
microprogrammed trap routine [38]. It is implemented by com-
mand queues and the memory-mapped register[39]. Current
GPUs may expose registers that can be poked by developers
to force preemption, but not by end users. When a preempting
kernel launch is detected, a base checkpointing command will
be written to the command queue which will further modify
the memory-mapped register to start the base checkpointing
in each SM [40]. We measure the signal transferring time in
the NVIDIA GTX 1060 GPU. This latency is around 1.3us

Chk-1 Chk-2
K1_TB1

Exe.

K1_TB1
Exe.

K2_TBs
Exe.

K2_TBs
Exe.

K2_TBs
Exe.

K1_TB2
Exe.

Chk-1

K2_TBs
Exe.

Chk-1
K1_TB2

Exe.

(a)

(b)

(c)

(d)

(e)

cudaLaunch() is
called for K2

K2 arrives
Kernel Pending Pool

Preemption
Ends

Timeline

Timeline

Timeline

Timeline

Timeline

K1_TB1
 Exe.

K1_TB2
Exe.

Chk-1
K1_TB2

Exe.
Chk-2

K1_TB2
Exe.

K1_TB1
Exe.

 K1_TB1
Exe.

K1_TB1
Exe.

Proactive Signal

Fig. 6: PEP Possibilities (K1: the preempted kernel, K2: the
preempting kernel, Chk-1: the base checkpoint, Chk-2: the
incremental checkpoint.)

and fairly constant across different applications. The signal
triggers a base checkpoint saving. We pause fetching new
instructions, and drain the pipeline. Otherwise, the state of
checkpoint context will be inconsistent. If the current kernel is
compute-intensive, this process may only take tens of cycles. If
it is memory-intensive, we must wait for the memory request
to return. Thus, pipeline draining time can be hundreds of
cycles per SM. The context of the base checkpoint is dirty
registers and shared memory corresponding to the initial state.

When the checkpointing is done, all the dirty bits are
cleaned. Then, the GPU checks whether the new kernel is
transferred to the KMU or not. If it is in the pending kernel
pool, it can start execution once it obtains SM resources.
Then, the current kernel can be preempted immediately, as
the current execution state has been saved. Otherwise, the
current kernel will continue executing until the actual pre-
emption request arrives. When the actual preemption request
arrives, we only need to save the incremental update. The
incremental checkpoint is the dirty context corresponding to
the base checkpoint, which is much smaller and takes much
less time. Since the dirty context of the incremental checkpoint
is those context which is modified after the base checkpoint, no
redundant data is saved. As above, the base checkpoint saving
occurs when the cudaLaunch for new high priority kernel is
called. Thus, the new kernel will be launched soon; therefore,
the incremental update will almost surely be small. Further,
with in-place context saving, the amount needed to be saved
can be reduced even more.

Restoration of the preempted kernel is similar to conven-
tional checkpointing. If we have two checkpoints’ states to
restore, we must restore one by one. However, at this time,
the SM will be idle; thus, the full bandwidth can be used for
the context restore.

2) Runtime Selection: As we know from the Table I,
execution time, context size, and launch time can vary among
kernels. Hence, when cudaLaunch triggers our proactive pre-

7

 cudaLaunch() is
called

Will predicted
preemption happen

within the TB?

Wait until all TBs Finish;
Dispatch TBs from
new kernel to SMs

Has preemption
happened?

Has preemption
happened?

Drain

Will predicted
preemption happen

within the TB?

Is est. drain time
smaller than

est. switch time?

Get active context; Save
checkpoint-1

Get dirty context relative to
checkpoint-1; Execute until

preemption; save checkpoint-2

Y (abc) N (cde)

Y (bd)

N (ae)

Y (c)

N (cde)

Y (cde)

N (de)

Y (c)

N (de)

Execute a fixed number of
instructions

Is est. drain time
smaller than

est. switch time?

Y (c)

N (ab)

 cudaLaunch() is
called

Will predicted
preemption happen

within the TB?

Wait until all TBs Finish;
Dispatch TBs from
new kernel to SMs

Has preemption
happened?

Has preemption
happened?

Drain

Get active context; Save
checkpoint-1

Get dirty context relative
to checkpoint-1;

Execute Until preemption;
save checkpoint-2

Y N

Y

N

YN

Is est. drain time
smaller than

est. switch time?

Y

N

Fig. 7: Runtime Selection.

emption mechanism, there are several possibilities. Figure 6
shows the possibilities:
(a)) Two checkpoints: Most often case. The kernel launch

time is longer than the base checkpoint saving time.
When the actual preemption starts, we save an incre-
mental checkpoint relative to the base.

(b)) Single checkpoint: This is the same as a traditional
context switch, but it starts earlier. It occurs when the
kernel launch time is shorter than checkpoint saving
time.

(c)) Drain: The preempted kernel is short. Its TB execution
time is shorter than preempting kernel launch time,
possibly finishing before the deadline. In this case, we
drain all TBs, achieving very little overhead.

(d)) Drain then single checkpoint: The preempted kernel is
the same as in case (b). If TB is nearly finished, the
preemption will not occur within the TB. Hence, we will
first drain the TB, then a new TB will be dispatched to
the SM. The new TB will start execution for a fixed
number of instructions before saving the checkpoint. In
this paper, we set the number of instructions to be 1000.

(e)) Drain then two checkpoints: The preempted kernel is
the same as in case (a). The TB is nearly finished when
cudaLaunch is called, which is similar to case (d).

We design a dynamic runtime selection mechanism to han-
dle all possibilities. Figure 7 illustrates our runtime selection.

Configurations Nvidia Geforce GTX980
Num. of SMs 16
SIMD Width 32
SIMT Core Clock 1216MHz
Memory Clock 7GHz
Memory Controller 4
Schedule Scheme 4 warp schedulers with LRR
Registers 256KB
Shared memory 96KB
TB Limit 32

TABLE II: GPGPU-Sim Configuration Parameters

When cudaLaunch is called for the preempting kernel, we
compare the predicted kernel launch time with the current TB’s
remaining execution time, which is estimated. If the predicted
preemption will occur within the TB, proactive preemption
starts. If the TB’s estimated drain time is longer than the
switch time, we define this kernel as long. Case (a) and (b)
operate on long kernels, collecting active context and saving
a base checkpoint to global memory. For the other cases, the
kernel’s predicted preemption will not occur within the TB’s
lifetime, so we drain, and a new TB from the current kernel is
dispatched. Then, we have to do the prediction and estimation
again. If the new TB can drain in time, and then preemption is
ready, we have case (c). Otherwise, we are in case (d), which
is just case (b) again, or case (e), which is just case (a) again.

E. Hardware Overhead

In order to implement PEP, the GPU needs to be extended
with new control logic to mainly implement the following:
(1) prediction and estimation units, which involve counters
for profiling and comparators for making decision; (2) dirty
bits, one bit for each register, totaling 8 KB per SM for
the GTX980 GPU [16]; (3) profiler counters, which are used
for collecting TB execution times. Overall, the majority of
overhead is largely in the dirty bit storage.

IV. EXPERIMENTS

A. Methodology

We implement PEP, and for comparison, Chimera, on the
latest version of GPGPU-Sim [41]. The system configuration
is summarized in Table II. The configuration of 256KB reg-
isters and 96KB shared memory reflects the large context in
recent GPU architectures. By default, GPGPU-Sim simulates
PTX instruction, which is a pseudo-assembly instruction set
with unlimited registers. It does not execute directly on the
hardware; SASS is the native instruction set run by the
hardware. Therefore, we simulate PTXPlus, which is a one-
to-one mapping from SASS. This is necessary to accurately
model dirty registers.

For comparison, we implement Chimera and PEP with
different variations: vanilla Chimera, Chimera with dirty con-
text saving, vanilla PEP and PEP with the in-place context
saving. We test using a wide range of kernels from GPGPU
applications from Nvidia Computing SDK [26], Parboil [25],
Rodinia [24] and Darknet [27]. For Chimera, we vary the
deadline. We observed that the average context switch time is

8

0

0.2

0.4

0.6

0.8

1

Drain Single Checkpoint Two Checkpoints
0

0.5

1

1.5

2

CP HT LBM KS MRI KN BS

N
or

m
al

iz
ed

 D
ra

in
 T

im
e

Chimera Est. Eval. 50% Drain &50% Switch Eval. All Drain

0
1
2
3
4
5
6

8 16 24 32

N
or

m
al

iz
ed

pr

ee
m

pt
io

n
La

te
nc

y

SMs

Fig. 8: Preemption Technique Distribution.

always smaller than 20.9µs, so we set deadlines of 5µs, 10µs
and 15µs. For PEP, we vary the preempting kernel launch
times, the predicted kernel launch time, and current progress
percentage at preemption. The PEP parameters are explained
later. We then compare the preemption latency, context size
and preemption overhead of these different designs.

Because GPGPU-Sim does not model the timing from the
cudaLaunch API call to the kernel’s actual launch time, we
design our own experimental method. We profile kernel launch
times with Nvidia’s profiler [42]; launch times range from
3µs to 33µs in Table I. We then set the preempting kernel
launch time as 5µs, 15µs, 25µs or 35µs. We also set the
predicted kernel launch time as 20µs or 30µs. Moreover,
as preemption can happen at any time during the execution
of preempted kernels, in order to make our evaluation more
comprehensive, we vary when the cudaLaunch occurs for the
preempting kernel. For experimental purposes, we invoke it at
25%, 50% and 75% of the average TB execution progress of
the preempted kernel. Hence, each application runs 24 times,
exhausting all possibilities. The results shown in the following
subsections are averages over a particular parameter.

B. Selection Distribution

In Figure 8, we collect the runtime selections of all TBs for
each application. TBs which do two checkpoints are only from
the 6 applications with average TB execution time longer than
100µs (See Table I). On the contrary, applications whose TBs
all choose to drain are from short kernels with short average
TB execution time. For LBM, the average TB execution time is
30.1µs, while the average switch time is 20.9µs; the drain time
and switch time are comparable. This closeness is what allows
for the variation of choice between draining or checkpoint,
varying over the percent progress parameter. Similarly for
pathfinder (PF), the base checkpoint saving time is similar
to the preempting kernel launch time. This closeness allows
for the variation of choice between a single checkpoint or two
checkpoints, varying over the percent progress parameter. In
the case of single checkpoint, we save overhead and shorten
latency by avoiding the second checkpoint.

Since there is a large gap between the average drain time
and average switch for most kernels, we usually choose a
single preemption method for all their TBs. Choosing a single
method means there is no bandwidth competition between

0

0.4

0.8

1.2

BS CP GM KS LBM MRI PF SG STN
or

m
al

iz
ed

 P
re

em
pt

io
n

La
te

nc
y

Chimera Chimera+dirty PEP PEP + In-place

0

5

10

15

20

25

Pr
ee

m
pt

io
n

La
te

nc
y

(u
s)

Chimera Chimera+dirty PEP PEP + In-place

0
5
10
15
20
25
30
35

0
1
2
3
4
5
6

0 2 4 6 8 10 D
ra

in
 T

im
e

pe
r T

B
 (u

s)

Sw
itc

h
Ti

m
e

pe
r T

B
 (u

s)

TBs Switching

Switch Time Drain Time

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

W
ar

p
In

st
ru

ct
io

n
C

ou
nt

s(
K

)

N
or

m
al

iz
ed

 A
llo

ca
te

d
R

eg
is

te
rs Initial (25%) Dirty1 (50%)

Dirty2 (75%) Warp Instructions

Fig. 9: Average Preemption Time.

draining and switching TBs. Hence, our estimates on latencies
do not suffer from interference of memory contention.

C. Preemption Latency

Figure 9 shows the preemption latency, which is measured
from time of the arrival of kernel at KMU to the last TB’s
context is saved. This is also the actual waiting time for the
preempting kernel in the kernel pending pool. We observe that
the last 7 kernels which drain all TBs per SM achieve low
latency. These applications also have short TB execution time.
Although Chimera suffers from inaccurate time estimation, it
still chooses the same preemption techniques as PEP; this is
due to the wide gap between the drain time and the switch
time, which does not require high accuracy. Accordingly, all
four designs have the same latency for draining; the average
drain time is 3.4µs. However, PEP and PEP+In-place reduce
the total average preemption latency from 8.9µs in Chimera
to 4.5µs and 3.6µs, respectively. A shorter preemption latency
allows kernels to meet a stricter deadline, increasing its
usefulness for multitasking.

Figure 10 shows normalized worst case preemption latency.
The first 9 applications do not choose to drain all TBs.
Two main factors affect their preemption latency: the pipeline
draining time and the total context size; however, the context
size is the key factor. Compared with Chimera, Chimera with
dirty context saving reduces the preemption latency by 31.8%,
as it reduces the saved context size. Compared with Chimera,
PEP reduces the average preemption latency by 58.5%; it
reduces by 70.3% if we leverage in-place saving. For Kmeans
(KS), PEP with in-place saving has zero preemption latency,
because the dirty context size for incremental checkpoint is
very small; it can completely be saved in place.

D. Context Size Reduction

For our experimental context, we only consider registers
and shared memory. Properly used shared memory should
be accessed frequently, because programmers use it in order
not to pay the global memory latency cost. Therefore, the
shared memory may become too dirty, causing unacceptable
overhead. Thus, we only use dirty bits for registers; we
always save the whole allocated shared memory. In our results,

9

0

0.4

0.8

1.2

BS CP GM KS LBM MRI PF SG STN
or

m
al

iz
ed

 P
re

em
pt

io
n

La
te

nc
y

Chimera Chimera+dirty PEP PEP + In-place

0

5

10

15

20

25

Pr
ee

m
pt

io
n

La
te

nc
y

(u
s)

Chimera Chimera+dirty PEP PEP + In-place

0
5
10
15
20
25
30
35

0
1
2
3
4
5
6

0 2 4 6 8 10 D
ra

in
 T

im
e

pe
r T

B
 (u

s)

Sw
itc

h
Ti

m
e

pe
r T

B
 (u

s)

TBs Switching

Switch Time Drain Time

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

W
ar

p
In

st
ru

ct
io

n
C

ou
nt

s(
K

)

N
or

m
al

iz
ed

 A
llo

ca
te

d
R

eg
is

te
rs Initial (25%) Dirty1 (50%)

Dirty2 (75%) Warp Instructions

Fig. 10: Normalized Preemption Time.

0

5

10

15

20

25

30

35

40

BS CP GM KS LBM MRI PF SG ST avg

C
o

n
te

x
t

S
iz

e
 (

K
B

/T
B

)

Chimera

Chimera+Dirty

PEP

PEP+In-place

Fig. 11: Context Size Comparison.

0

2

4

6

8

10

12

14

BS CP GM KS LBM MRI PF SG ST avg

La
te

nc
y(

us
)

Chimera
Base Checkpoint
Incremental Checkpoint
Incremental Checkpoint+In-place

0
5

10
15
20
25
30
35
40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
) PEP+In-place

Base Checkpoint
Incremental Checkpoint+In-place

0

5

10

15

20

25

30

35

40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
)

Chimera
Chimera+Dirty
PEP
PEP+In-place

0
5

10
15
20
25
30
35
40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
)

PEP
Base Checkpoint
Incremental Checkpoint

Fig. 12: Context Size per TB.

“context size” refers to only the context which must be saved
to global memory.

Figure 11 compares the context size among designs. Saving
only dirty context, Chimera can reduce the average context size
by 6KB per TB, which is 34.4% of its average total context
size. Since PEP may save checkpoint states twice, the average
total context size for PEP will be larger than Chimera+dirty;
however, it is almost the same as original Chimera. However,
PEP can further reduce the context size by 16.2% with in-place
saving.

Figure 12 and Figure 13 show the context size details for
both PEP and PEP with in-place saving, respectively. For
applications that choose to context switch all the TBs, the
total context size is the sum of the base checkpoint and the
incremental checkpoint. The result shows that the context
size of the incremental checkpoint is only 56.1% of the base
checkpoint, on average. The in-place saving can further reduce
the context size for the incremental checkpoint. The result

0

2

4

6

8

10

12

14

BS CP GM KS LBM MRI PF SG ST avg

La
te

nc
y(

us
)

Chimera
Base Checkpoint
Incremental Checkpoint
Incremental Checkpoint+In-place

0
5

10
15
20
25
30
35
40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
) PEP+In-place

Base Checkpoint
Incremental Checkpoint+In-place

0

5

10

15

20

25

30

35

40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
)

Chimera
Chimera+Dirty
PEP
PEP+In-place

0
5

10
15
20
25
30
35
40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
)

PEP
Base Checkpoint
Incremental Checkpoint

Fig. 13: Context Size with In-place per TB.

0

0.2

0.4

0.6

0.8

1

Drain Single Checkpoint Two Checkpoints
0

0.5

1

1.5

2

CP HT LBM KS MRI KN BS

N
or

m
al

iz
ed

 D
ra

in
 T

im
e

Chimera Est. Eval. 50% Drain &50% Switch Eval. All Drain

0
1
2
3
4
5
6

8 16 24 32

N
or

m
al

iz
ed

pr

ee
m

pt
io

n
La

te
nc

y

SMs

Fig. 14: Sensitivity to the Num. of SMs.

in Figure 13 shows that the context size in the incremental
checkpoint averages 3.34KB per TB, which is only 29.4% of
the average context size in the base checkpoint. We can see
that two checkpoints reduce the context size significantly.

E. Sensitivity Analysis

In this section, we measured the sensitivity of scalability
and bandwidth. We vary the number of SMs but maintain the
same number of memory partitions and the same bandwidth
to analyze the impact on the preemption latency of the
checkpointing scheme. Figure 14 shows that the preemption
latency increases almost linearly with the increasing number of
SMs due to increase memory traffic. Since the context inside
each SMs are the same, more SMs lead to high contention in
memory bandwidth. As shown in the Figure 14, the average
preemption latency of 32 SMs is 2.58 times longer than the
average preemption latency of 16 SMs, which means the
checkpointing scheme is sensitive to the memory bandwidth.
Hence, this result further proves the decision in that instead
of overlapping the execution and the context switching, all
bandwidth should be provided for the context switching to
accelerate the preemption.

F. Impact of Preemption Overhead

The overhead for preemption is the idle time of execution
units caused by preemption. This is shown in Figure 15. When
the SM is switching context, switching TBs must stop fetching
instructions and stop execution. SPs idle for both context swap

10

0

2

4

6

8

10

12

14

BS CP GM KS LBM MRI PF SG ST avg

La
te

nc
y(

us
)

Chimera
Base Checkpoint
Incremental Checkpoint
Incremental Checkpoint+In-place

0
5

10
15
20
25
30
35
40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
) PEP+In-place

Base Checkpoint
Incremental Checkpoint+In-place

0

5

10

15

20

25

30

35

40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
)

Chimera
Chimera+Dirty
PEP
PEP+In-place

0
5

10
15
20
25
30
35
40

BS CP GM KS LBM MRI PF SG ST avg

C
on

te
xt

 S
iz

e
(K

B
/T

B
)

PEP
Base Checkpoint
Incremental Checkpoint

Fig. 15: Context Saving Overhead.

out and context restore. The only difference between swap
out and restoration times is that we drain the pipeline before
swapping out. Hence, we only compare the average context
saving latencies per TB as overhead.

Figure 15 shows that the base checkpoint reduces the
average overhead by 37.9% from Chimera. The overhead of
the base checkpoint is similar to Chimera with dirty context
saving. With two checkpoints, the overhead of our PEP is
still 6.3% lower than Chimera. When using the in-place
context saving to reduce the context size of the incremental
checkpoint, the overhead of PEP can be further reduced by
16.4% on average. Some applications do have higher overhead
when compared with Chimera. In these cases, the register
reuse rate is high, so the dirty context size is larger. Also, with
two checkpoints, more time is needed to drain the SM pipeline.
However, a the context size and the context switch overhead
are positively correlated, some applications, like LBM and ST
save more than 50% of overhead, due to a small dirty context
size.

V. RELATED WORK

The main focus of GPU preemption research is reducing the
preemption latency and overhead; it is prohibitive to use CPU
methods naively as the context size for GPUs is much larger. In
addition to traditional context switching, Tanasic et al. propose
SM draining [19], which works for preempted kernels which
are relatively short. Park et al. propose the SM flushing [21]. It
can achieve zero preemption latency for idempotent preempted
kernels. Furthermore, their work combines context switching,
SM-draining and SM-flushing to work collaboratively based
on the progress of TBs. Wang et al. [20] designed a fine-
grain dynamic sharing mechanism, SMK. Their design enables
a fine-grain context switch mechanism on per TB basis to
achieve low turnaround time.

To focus on context size reduction, iGPU [43] has the
insight that context can be saved and restored at the boundaries
between idempotent code regions. They leverage liveness
analysis to identify recovery points; these points have a small
set of live registers. Lin et al. [18] propose three techniques to
implement lightweight context switching, including in-place
context saving, liveness analysis and context compression.

Checkpointing is typically used for fault tolerance [44][45].
Traditional checkpointing software, such as BLCR [46], sup-
ports checkpointing the CPU state by using a custom linux

kernel. This does not work for off chip GPUs because a driver
manages GPU memory; thus, BCLR cannot restore its state.
CheCUDA [34] was the first attempt to solve this issue for
Nvidia GPUs. It is implemented as an add-on for BCLR;
it works by sidestepping BCLR. It requires recompilation
of applications. NVCR [35] improves upon this, supporting
the larger class of applications which use the runtime API.
Furthermore, it replaces libcuda.so; thus, it can be used
without recompilation. Additionally, virtualization is another
technique used to checkpoint applications; vCUDA [47] is the
first to do such work.

Our checkpointing is not real checkpointing. Actually, it is
context saving which behaves similarly to the checkpointing.
We utilize the procedure of checkpointing for reducing context
size saved during preemption. Unlike any checkpointing which
is performed periodically, PEP only checkpoints at most 2
times (base checkpointing and incremental checkpointing).
The base checkpointing is triggered by the system call of
preempting kernel launching which belongs to software, while
the incremental checkpointing is triggered by the actual pre-
emption signal, which is a hardware signal. State-of-the-art
checkpointing needs both context saving and fault recovery
units to guarantee reliability, while our PEP checkpointing is
more lightweight design as there is not faulty recovery unit
involved.

All previous preemption mechanisms are reactive, meaning
the mechanism will not start until the preempting kernel is
launched and requests resources. Thus, the algorithm must
wait for the SM to context switch or drain TBs. By leveraging
the kernel launch process, PEP is a proactive technique. By
utilizing checkpoint, PEP can obtain a lower latency then other
methods, still with acceptable overhead.

VI. CONCLUSION

In this paper, we proposed PEP, a dynamic and proactive
preemption mechanism on GPUs. With only a rough predic-
tion of preempting kernel launch time, we can successfully
anticipate preemption before the actual request arrives. We
borrow checkpointing from fault tolerance, which allows us to
shorten preemption latency. Further, checkpointing can tolerate
imperfect predictions. To predict preemption, we leverage
the kernel launch process done by the GPU driver. The
driver triggers a base checkpointing when it receives a kernel
launch command from the CPU. This allows us to later
only save an incremental checkpoint as soon as the actual
preemption request arrives. Further, SMs can execute between
two checkpoints as usual. We also support SM draining
for short kernels, and we further borrow in-place context
saving to achieve low preemption overhead. For our proactive
checkpoint mechanism, we achieve 58.6% average preemption
latency reduction and 23.3% average context switch overhead
reduction. The average preemption latency is also reduced
to 3.6µs, which allows for stricter deadlines, thus increasing
multitasking support.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their valuable feedback and improvements to this paper. This

11

work is partially supported by grants from National Sci-
ence Foundation, CCF-1422331,CCF-1617071,CCF-1718080
and CCF-1725657; National Natural Science Foundation of
China (61832018, 61762526); Research Project of NUDT
(ZK17-03-06) and Science and Technology Innovation Project
of Hunan Province (2018RS3083). During this work, Chen
Li was supported by the Chinese Scholarship Council. A
preliminary version of this paper was presented at the 55th
Annual Design Automation Conference (DAC’18) [48].

REFERENCES

[1] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graphics process-
ing units,” Journal of Computational Physics, vol. 227, no. 10, pp. 5342–
5359, 2008.

[2] J. Mosegaard and T. S. Sørensen, “Real-time deformation of detailed
geometry based on mappings to a less detailed physical simulation on
the gpu.,” in IPT/EGVE, pp. 105–111, 2005.

[3] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, et al., “Optix: a
general purpose ray tracing engine,” in ACM Transactions on Graphics
(TOG), vol. 29, p. 66, ACM, 2010.

[4] V. Podlozhnyuk, “Black-scholes option pricing.” https://developer.
download.nvidia.com/compute/cuda/1.1-Beta/x86 website/projects/
BlackScholes/doc/BlackScholes.pdf, 2007.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfel-
low, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems.”
http://download.tensorflow.org/paper/whitepaper2015.pdf, 2015.

[6] Amazon, “An Introduction to High Performance Computing on AWS.”
https://d0.awsstatic.com/whitepapers/Intro to HPC on AWS.pdf, 2015.

[7] C. Nvidia, “Nvidias next generation cuda compute architecture: Kepler
gk110,” Whitepaper, 2012.

[8] M. Mantor, “Amd radeon hd 7970 with graphics core next (gcn)
architecture,” in Hot Chips 24 Symposium (HCS), 2012 IEEE, pp. 1–35,
IEEE, 2012.

[9] P. Rogers and A. Fellow, “Heterogeneous system architecture overview,”
in Hot Chips, vol. 25, 2013.

[10] Advanced Micro Devices, Inc., “AMD Radeon R9 290X.” http://www.
amd.com/us/press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx.

[11] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case for
gpgpu spatial multitasking,” in High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, pp. 1–12, IEEE,
2012.

[12] J. Calhoun and H. Jiang, “Preemption of a cuda kernel function,” in
Software Engineering, Artificial Intelligence, Networking and Parallel
& Distributed Computing (SNPD), 2012 13th ACIS International Con-
ference on, pp. 247–252, IEEE, 2012.

[13] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,” in
Proceedings of the 2007 workshop on Experimental computer science,
p. 2, ACM, 2007.

[14] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu
concurrency with elastic kernels,” in ACM SIGPLAN Notices, vol. 48,
pp. 407–418, ACM, 2013.

[15] C. Nvidia, “Nvidia cuda c programming guide,” Nvidia Corporation,
vol. 120, no. 18, p. 8, 2011.

[16] C. Nvidia, “Nvidia geforce gtx980 whitepaper,” Whitepaper, 2014.
[17] G. Chen, Y. Zhao, X. Shen, and H. Zhou, “Effisha: A software

framework for enabling effficient preemptive scheduling of gpu,” in
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 3–16, ACM, 2017.

[18] Z. Lin, L. Nyland, and H. Zhou, “Enabling efficient preemption for simt
architectures with lightweight context switching,” in High Performance
Computing, Networking, Storage and Analysis, SC16: International
Conference for, pp. 898–908, IEEE, 2016.

[19] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” in ACM SIGARCH
Computer Architecture News, vol. 42, pp. 193–204, IEEE Press, 2014.

[20] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel gpu: Multi-tasking throughput processors
via fine-grained sharing,” in High Performance Computer Architecture
(HPCA), 2016 IEEE International Symposium on, pp. 358–369, IEEE,
2016.

[21] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative pre-
emption for multitasking on a shared gpu,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 1, pp. 593–606, 2015.

[22] L. Shi, H. Chen, and T. Li, “Hybrid cpu/gpu checkpoint for gpu-
based heterogeneous systems,” in International Conference on Parallel
Computing in Fluid Dynamics, pp. 470–481, Springer, 2013.

[23] S. Kannan, N. Farooqui, A. Gavrilovska, and K. Schwan, “Hete-
rocheckpoint: Efficient checkpointing for accelerator-based systems,” in
Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP
International Conference on, pp. 738–743, IEEE, 2014.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pp. 44–54, Ieee, 2009.

[25] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[26] NVIDIA SDK. https://developer.nvidia.com/cuda-toolkit.
[27] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv

preprint arXiv:1612.08242, 2016.
[28] Advanced Micro Devices, Inc., “OpenCL: The Future of Accelerated

Application Performance Is Now.” https://www.amd.com/Documents/
FirePro OpenCL Whitepaper.pdf.

[29] Advanced Micro Devices, Inc., “ATI Radeon GPGPUs.”
http://www.amd.com/us/products/desktop/graphics/amd-radeon-hd-
6000/Pages/amd-radeon-hd-6000.aspx.

[30] Intel, “Intel microprocessors,” http://www.intel.com/content/www/us/en/homepage.html.
[31] Advanced Micro Devices, Inc., “What is Heterogeneous System Archi-

tecture (HSA)?,” 2013.
[32] S. Kato, S. Brandt, Y. Ishikawa, and R. Rajkumar, “Operating systems

challenges for gpu resource management,” in Proc. of the International
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, pp. 23–32, 2011.

[33] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram,
“Warped-compression: enabling power efficient gpus through register
compression,” in ACM SIGARCH Computer Architecture News, vol. 43,
pp. 502–514, ACM, 2015.

[34] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi, “Checuda: A
checkpoint/restart tool for cuda applications,” in Parallel and Distributed
Computing, Applications and Technologies, 2009 International Confer-
ence on, pp. 408–413, IEEE, 2009.

[35] A. Nukada, H. Takizawa, and S. Matsuoka, “Nvcr: A transparent
checkpoint-restart library for nvidia cuda,” in Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE Interna-
tional Symposium on, pp. 104–113, IEEE, 2011.

[36] C. Nvidia, “Nvidia tesla p100 whitepaper,” Whitepaper, April 2016.
[37] S. Puthoor, X. Tang, J. Gross, and B. M. Beckmann, “Oversubscribed

command queues in gpus,” in Proceedings of the 11th Workshop on
General Purpose GPUs, pp. 50–60, ACM, 2018.

[38] K. Menychtas, K. Shen, and M. L. Scott, “Disengaged scheduling
for fair, protected access to fast computational accelerators,” Symp. on
Architectural Support for Programming Languages and Operating Sys-
tems(ASPLOS’14), vol. 42, no. 1, pp. 301–316, 2014.

[39] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “GPUvm: Why Not
Virtualizing GPUs at the Hypervisor?,” in USENIX ATC, 2014.

[40] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “Gpuvm: Gpu virtualiza-
tion at the hypervisor,” IEEE Transactions on Computers, vol. 65, no. 9,
pp. 2752–2766, 2016.

[41] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in Perfor-
mance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, pp. 163–174, IEEE, 2009.

[42] NVIDIA, Profiler User’s Guide, June 2017.
[43] J. Menon, M. De Kruijf, and K. Sankaralingam, “igpu: exception support

and speculative execution on gpus,” in ACM SIGARCH Computer
Architecture News, vol. 40, pp. 72–83, IEEE Computer Society, 2012.

[44] R. Teodorescu, J. Nakano, and J. Torrellas, “Swich: A prototype for
efficient cache-level checkpointing and rollback,” IEEE Micro, vol. 26,
no. 5, pp. 28–40, 2006.

12

 https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/BlackScholes/doc/BlackScholes.pdf
 https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/BlackScholes/doc/BlackScholes.pdf
 https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/BlackScholes/doc/BlackScholes.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://d0.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf
http://www.amd.com/us/press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx
http://www.amd.com/us/press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx
https://www.amd.com/Documents/FirePro_OpenCL_Whitepaper.pdf
https://www.amd.com/Documents/FirePro_OpenCL_Whitepaper.pdf
http://www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/Pages/amd-radeon-hd-6000.aspx
http://www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/Pages/amd-radeon-hd-6000.aspx

[45] T. Li, M. Shafique, J. A. Ambrose, J. Henkel, and S. Parameswaran,
“Fine-grained checkpoint recovery for application-specific instruction-
set processors,” IEEE Transactions on Computers, vol. 66, no. 4,
pp. 647–660, 2017.

[46] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (blcr)
for linux clusters,” in Journal of Physics: Conference Series, vol. 46,
p. 494, IOP Publishing, 2006.

[47] L. Shi, H. Chen, J. Sun, and K. Li, “vcuda: Gpu-accelerated high-
performance computing in virtual machines,” IEEE Transactions on
Computers, vol. 61, no. 6, pp. 804–816, 2012.

[48] C. Li, A. Zigerelli, J. Yang, and Y. Guo, “Pep: Proactive checkpointing
for efficient preemption on gpus,” in Proceedings of the 55th Annual
Design Automation Conference, DAC ’18, (New York, NY, USA),
pp. 114:1–114:6, ACM, 2018.

Chen Li is a Ph.D. candidate at the National
University of Defense Technology. His advisor is
Prof.Yang Guo. He was a visiting student at the
University of Pittsburgh from 2016 to 2018, co-
advised by Prof.Jun Yang and Prof.Youtao Zhang.
His current research interests primarily include GPU
architecture, virtual memory and network on chip.
He received the B.E. and M.E. degrees at the Na-
tional University of Defense Technology, China in
2012 and 2014 respectively.

Andrew Zigerelli received a B.S. in Mathematics
from the University of Pittsburgh in 2015. He is
currently a PhD candidate in the Electrical and
Computer Engineering department, University of
Pittsburgh in Pittsburgh, PA, advised by Dr. Jun
Yang. His interests include security and GPUs.

Jun Yang received the BS degree in computer
science from Nanjing University, China, in 1995,
the PhD degree in computer science from the Uni-
versity of Arizona in 2002. She is a professor in
the electrical and computer engineering department,
University Pittsburgh. She is the recipient of US NSF
Career Award in 2008. She has best paper awards
from ICCD 2007 and ISLPED 2013. Her research
interests include GPU architecture, secure processor
architecture, emerging non-volatile memory tech-
nologies, performance and reliability of memories.

Youtao Zhang is currently an Associate Professor
of Computer Science, University of Pittsburgh, Pitts-
burgh, PA, USA. He received the Ph.D. degree in
computer science from the University of Arizona,
Tucson, AZ, USA, in 2002. His current research
interests include memory systems, GPUs, and secure
hardware designs. Prof. Zhang was the recipient of
the U.S. National Science Foundation Career Award
in 2005. He is also the co-author of several papers
that received best paper awards. He is a member of
ACM/IEEE.

Sheng Ma received the B.S. and Ph.D. degrees in
computer science and technology from the National
University of Defense Technology (NUDT) in 2007
and 2012, respectively. He visited the University
of Toronto from Sept. 2010 to Sept. 2012. He is
currently an Assistant Professor of the College of
Computer, NUDT. His research interests include on-
chip networks, SIMD architectures and arithmetic
unit designs.

Yang Guo received his Ph.D. degree from National
University of Defense Technology, China in 1999.
He is currently a professor at the National University
of Defense Technology He leads the digital signal
processor group and is the director of the Integrated
Circuits. His primary research interests include low
power VLSI circuits, microprocessor design and
verification, and electronic design automation (EDA)
techniques for VLSI circuits

13

	Introduction
	Background and motivation
	Baseline Architecture
	GPU Program Execution
	GPU Architecture

	Prior Preemption Methods
	Checkpointing in GPUs
	Motivation

	Design
	Overview
	Prediction and Estimation
	Prediction
	Estimation

	Context Reduction
	Proactive Preemption Design
	Checkpoint Saving
	Runtime Selection

	Hardware Overhead

	Experiments
	Methodology
	Selection Distribution
	Preemption Latency
	Context Size Reduction
	Sensitivity Analysis
	Impact of Preemption Overhead

	Related work
	Conclusion
	References
	Biographies
	Chen Li
	Andrew Zigerelli
	Jun Yang
	Youtao Zhang
	Sheng Ma
	Yang Guo

