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1 Definitions

Let x, y be matrices of order m x n and o X p respectively, i.e..

Ti1 ot Tin Yyir o Yip
= y=| : (1)

Tmi1 ° Tmn Yo1 ° Yop

We refer to a matrix of order 1 x 1 as a scalar, and a matrix of order m x 1
where m > 1, as a vector. We let f be a generic function of the form y = f(z).
If = is a vector and y is a scalar we say that f is a scalar function of a vector.
If = is a matrix and y a vector, we say that f is a vector function of a matrix,
and so on.

General Definition: Derivative of a matrix function of a matrix.

9y ... Oy
82/ def 830.11 . 31.1n (2)
or oy ... oy
OTm1 OLpn
where
oy | T (3)
Oz oL O
0z Oxij

Thus the derivative of a p X ¢ matrix y with respect to a m X n matrix x is a
(mp) x (ng) matrix of the following form

9y11 dy11 Y14 Oy1q

Ox11 0x1n Ox11 0x1n

9y11 Oy11 9y1q Oy1q

0T m1 OTmn Oxm1 OTrmn
Y aer (4)
ox

Oyp1 OYp1 OYpq OYpq

dz11 0T1n dx11 0T1n

OYp1 OYp1 OYpq OYpq

0T m1 OTmn 0T m1 OTmn

From this definitions we can derive a variety of important special cases.

Derivative of a scalar function of a vector.

We think of a vector as a

matrix with a single column and a scalar as a matrix with a single cell. Applying



the general definition we get that

Oy

)
Wl ®)
ox 5y

0L

Gradient of a scalar function of a vector. We represent gradients using
the V sign. For the case of gradients of scalar functions of a vector, we define
the gradient to equal the derivative (note this will not be the case for vector
functions of vectors)

ot O
Voy ™ 2 (6)

Derivative of a vector function of a vector. If we think of y and x as px 1
and m X 1 matrices, then the derivative would be a vector with mp dimensions.

81‘ - 8.1311 ’ 61‘11 . .8$1m ’ Barlm

ay def 5y11 . aym . ayll . 8ypl )T (7)

Jacobian of a vector function of a vector. A more useful representation
can be obtained by working with the derivative of y with respect to the transpose
of x. This results on an p X m matrix which is known as the Jacobian of y with
respect to ©

gﬁ 7591/1

1 T m

def 83/ . . .

Sy = 92T : - : (8)
Oyp .. Oy
Oz OTm

The Jacobian is very useful for linearizing vector functions of vectors
f(@) = f(zo) + Jof (x — 20) (9)

Gradient of a vector function of a vector. Note if y is a scalar then
Joy = % = (V.y)T i.e., the Jacobian of a scalar function is the transpose of
the gradient. With this in mind we will define the gradient of a vector function
of a vector as the transpose of the Jacobian

. oy \* oy’
Vey = (Ly)' = (axyT) = % (10)

Hessian of a scalar function of a vector. Lety = f(z), y € R, x € R™.
The matrix

%y ... _9%
9 8y T Ox10x1 Ox10x,
Py
Oz, 011 0Ty Oy



is called the Hessian matrix of y with respect to x.
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Summary of definitions

For x, y vectors

3

o Oyt
Gradient: V,y = % (12)
. o O
Jacobian:  J,y = (Vey)® = 8TyT (13)
Hessian: H,y = V2y <V, V.y (14)

Chain Rules

1. Vector functions of vectors: If z = h(y), is a vector function of a

vector, and y = f(x) is a vector function of a vector then

Joz = (Jyz)(Jey) (15)
or equivalently

Voz = (Vay)(Vy2) (16)

Example 1: Consider the quadratic function
z=ylay (17)
where y is an n dimensional vector a is an n X n matrix. It is easy to show

that
OzTazx

Era > wjar; + ajr) (18)
J
thus
Joxlar = 27 (a + a™) (19)
Verlar = (a+a¥)x (20)

Moreover if
y=bx (21)

where z is an m dimensional vector and b is an n X m matrix then

Juy = b (22)
Voy = bt (23)

Thus



Jo(bz —c)Ta(bz — ¢) = (Jpg—c(bz — o)l a(bx — o) (Jo(bx —c)) (24)
=(x—c)(a+a")b (25)

and

Valz —p)Tale —p) =b" (a+a")(z — )" (26)

Example 2: Let z, y vectors

Vae® Yy =Vye" ¥ VemTyeITy y (27)
where
VzewTy =V,aly Vary et = yeITy (28)
Vo, € by =V r,ye” ¥ =y7 (29)
Thus . .
Veet Vy=yet vyl (30)

. Scalar functions of matrices: If z = h(y) is a scalar function of a
matrix and y = f(x) is a matrix function of a scalar then

0z 0z [ Oy r B 0z T@y
%trace [6}, ((%> 1 = trace l(ay) Pz (31)



4 Useful Formulae (I need to check whether no-
tation is consistent with other parts of the

document)

Let a, b, ¢, d matrices, x,y, z vectors.

4.1 Linear and Quadratic Functions

d
Vg cx = %(cx)T =T

Jpcx = (Vyer) =¢

%(aaz +b)Te(dz + e) = aTe(dr + e) + d¥ T (ax +b),

%(a:c +b)Tc(ax +b) = a” (¢ + ") (azx + b)

di(ax + b c(ax +b) = (¢ + ") (ax + b)aT,
a

d—xTaTbay = bl azy” + bayzT
a

4 r . _ T
Tat =y

7I/€tay — txetay/

da




4.2 Traces

%trace [a] =1 (41)
d bel = d TbT ™ . T.T 42
- trace [abc] = - trace [c"b"a’] =a’c (42)
d n—1 T
—ptrace[ab"] = (Z biab"“> (43)
=0
d
%trace [adbeTc] =a’ctdb” + caeb (44)
d T T
%trace [a"ba] = (b+b")a (45)
d -1 -7, 1
%trace [a™'b] = —a""b"a (46)
4.3 Determinants
d -7
%det [a] = det [a] a (47)
4.4 Kronecker and Vecs
Oveclabc] T
= 4
dvect]  C@¢ (48)
5 Matrix Differential Equations
d(at + bt) dat dbt
=t 4 4
dt dt dt (49)
d(atbt) - dat dbt
Tar T a @ (50)
d(ay)  day day
— -t 1
dt a g (51
d(a?)  day day
— 2
a @t (52)
dasa; " da; _ _1da
T 63)
a; ! _1day _
e g &
(55)




It is only possible to expect de®dt = a;e® under conditions of full commuta-
tivity Types of linear matrix equations

E = batC (56)

with special cases when b or ¢ are the identity matrix. The following tricks allow
moving the coefficients to the left, or right

E = atC (58)
then
da
dtt cral (59)
(60)
and if p
a
7; = bat (61)
then
da;t _qday _ _ _ _
dif =—a 1d—tta V= —a Ybasa; ' = —a; b (62)
(63)

It can be shown that if a¢ is non-singular, then the solution a; is non-singular
for all ¢.



6 Determinants

o [I+ay|=1+2a'y, z,yecR

° |ea| — etrace(a)

7 'Trace

e trace(a + b) = trace(a) + trace(b)

e trace(a) = trace(a”l)

e trace(abc) = trace(cab) = trace(bca)

e trace(zy’a) = yTax, z € R™,y € R"
(a”

o trace(arb”) = aTrb confirm r does not need rotation

e If ais m x n and b is n x m then trace(ab) = trace(ba) = trace(a’ b’

8 Matrix Exponentials

° |ea| — etrace(a)

o if a = pAp~! then e® = pe’p—!

ta
dZt — aeta

d ota,, _ 4 ta.,,/
o —xey =tery

8.1 Proofs:

= —<Tre

da'ets d HotsLi)),
aaij do

d /
_ Jota [ 61,10
L ()

= a:’etatlil;eélilgy sm0 t(e'x)iy; (64)
Thus Dot
a

gz = tetaxy/ (65)

9 Matrix Logarithms

Let a a real or complex square matrix of ordeer n with positive eigenvalues.
Then there is a unique matrix b such that (1) @ = €” and (2) the imagignary
part of the eigenvalues is in [—m, 7]. We call b the principle logarithm of a.

e if a = pAp~! then log(a) = plog(A)p~!



10 Kronecker and Vec

Provide a way to deal with derivatives of matrix functions without having to use
cubix or quartix (i.e., matrices with 3 or 4 dimensions). Instead of working with
matrix functions we work with vectorized versions of matrix functions. This
gives rise to the Kronecker product, or tensor product.

Definition: Kronecker product

a11b T alnb
a®b= Do (66)
am1b o Amnb
Definition: Vec operator
ari
Gm1
ai2
vecfa] = o (67)
Q1n
amn
10.1 Properties
1.
a®@bRc=(aRb)R®c=a® (bc) (68)
provided the dimensions of the matrices allows for all the expressions to
exist.
2.
(a+b)R@(c+d)=a®c+ad+bRc+b®d (69)
3.
(a®b)(c®d) = (ac) ® (bd) (70)
4.
(a®b)(b®d) = (ac) ® (bd) (71)
5.
(a@b)T =a” @b (72)
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(a@b) t=at®b? (73)

7.
vec [abT] =b®a (74)

8.
vec [abc] = (¢! ® a) vec [b] (75)

9. If {\;, u; } are eigenvalues/eigenvectors of a and {J;, v; } are eigenvalues/eigenvectors
of b then {\;d;,u; @ v;} are eigenvalues/eigenvectors ofr a ® b

v detla ® b] = det[a]™det[b]" (76)
where a,b are of order n x n and m x m respectively.
11.
trace(a ® b) = trace[a| trace[b] (77)
12.

2
Vvecac

(azxbzT) = V?

vecr

vec(zT) (b @a)vecr = boa’+b @atrace(a®b) = trace[a] trace|b]
(78)
where a, b, x are matrices.

11 Optimization of Quadratic Functions

This is arguably the most useful optimization problem in applied mathematics.
Its solution is behind a large variety of useful algorithms including Multivariate
Linear Regression, the Kalman Filter, Linear Quadratic Controllers, etc. Let

p(x) = B(be — C)a(bx — C) +2"d x (79)

where a and d are symmetric positive definite matrices, b is a matrix, x a vector
and C a random vector. Taking the Jacobian with respect to x and applying
the chain rule we have

Jop = Jye_c(br — ) a(br — ¢) Jo(bxr — ¢) + J,aldx (80)
=2(bz — ¢)Tab+ 227d (81)
Vep = (Jo)T =207 a(be — ¢) +2d x (82)

Setting the gradient to zero we get
(b"ab+ d)x = b"ac (83)
This is commonly known as the Normal Equation. Thus the value & that mini-

mizes p is

Z = he (84)
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where

h=b"ab+d) b a (85)
Moreover
p(#) = (bhe — )T a(bhe — ¢) + T hl dhe (86)
=TT abhe — 2¢T T ac + cFac + P Rl dhe (87)
Now note
BT abhe + "W dhe = TR (b ab + d)he (88)
=cTaTb(bTab+d) " (b7 ab + d) (b ab + d) "'  ac
(89)
=cTaTv(bTab + d) b ac (90)
=cI'hTvTac (91)
Thus
p(#) = cTac — "R  ac = Tke (92)
where
k=a—h"v"a=a—a"b(b"ab+d)"'b"a (93)

This is known as the Riccati Equation which is found in a variety of stochastic
filtering and control problems.

Example Application: Ridge Regression Let y € R" represents a set of
observations on a variable we want to predict, b is an n X p matrix, where each
row is a set of observations on p variables used to predict ¢, and = € RP are the
weights given to each variable to predict y. A useful measure of error is

plw) = (bx — )" (bx — y) + AaTa (94)

where A > 0 is a constant that penalizes for the use of large values of z. Thus
the solution to this problem is

&= (bTb+ A,) o by (95)

where I, is the p x p identity matrix.

12 Optimization Methods

12.1 Newton-Raphson Method

Let y = f(z), for y € R, z € R". The Newton-Raphson algorithm is an iterative
method for optimizing y. We start the process at an arbitrary point zo € R" .

12



Let x; € R™ represent the state of the algorithm at iteration ¢. We approximate
the function f using the linear and quadratic terms of the Taylor expansion of
f around x;.

fe(@) = f@2) + Vo f(ze)(z — )" + %(x = 22)" (Vo Vaf (@) (x — z:)  (96)

and then we then find the extremum of ft with respect to x and move directly
to that extremum. To do so note that

Voful@) = Vaf (@) + (VaVaf(21) (z = 20) (97)
We let 2(t 4 1) be the value of z for which V, f;(z) = 0

Ter1 =2+ (VaVaf(21)) 7 Vo f (@) (98)

It is useful to compare the Newton-Raphson method with the standard method
of gradient ascent. The gradient ascent iteration is defined as follows

T = ¢ + €L, Vo f(24) (99)

where € is a small positive constant. Thus gradient descent can be seen as a
Newton-Raphson method in which the Hessian matrix is approximated by %In.

12.2 Gauss-Newton Method

Let f(z) =1 ri(x)? for r; : R® — R. We start the process with an arbitrary
point xg € R™. Let x; € R™ represent the state of the algorithm at iteration t¢.
We approximate the functions r; using the linear term of their Taylor expansion
around ;.

Folae) = ralwe) + (Vari(e) (@ — @) (100)

folw) = 3 (@) = 3 (i) = (Vori(wn) T + (Tari(e) T2)? - (101)
=1 =1

(102)

Minimizing ft(x) is a linear least squares problem of well known solution. If we
let y; = (Vori(x)) oy — ri(xy) and u; = Vori(z4) then

Tpp1 = (Z ululT)il(Z UiYs) (103)

Note this is equivalent to Newton-Raphson with the Hessian being approxi-
mated by (37, uuf )™t
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History

1. The first version of this document was written by Javier R. Movellan, on
May 2004, based on an Appendix from the Multivariate Logistic Regres-
sion Primer at the Kolmogorov Project. The original document was 7
pages long.
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