
Matrix Recipes

Javier R. Movellan

December 28, 2006

Copyright c© 2004 Javier R. Movellan

1

1 Definitions

Let x, y be matrices of order m× n and o× p respectively, i.e..

x =

 x11 · · · x1n

...
. . .

...
xm1 · · · xmn

 y =

 y11 · · · y1p

...
. . .

...
yo1 · · · yop

 (1)

We refer to a matrix of order 1× 1 as a scalar, and a matrix of order m× 1
where m > 1, as a vector. We let f be a generic function of the form y = f(x).
If x is a vector and y is a scalar we say that f is a scalar function of a vector.
If x is a matrix and y a vector, we say that f is a vector function of a matrix,
and so on.

General Definition: Derivative of a matrix function of a matrix.

∂y

∂x

def=

∂y

∂x11
· · · ∂y

∂x1n

...
. . .

...
∂y

∂xm1
· · · ∂y

∂xmn

 (2)

where

∂y

∂xij

def=

∂y11
∂xij

· · · ∂y1q

∂xij

...
. . .

...
∂yp1
∂xij

· · · ∂ypq

∂xij

 (3)

Thus the derivative of a p × q matrix y with respect to a m × n matrix x is a
(mp)× (nq) matrix of the following form

∂y

∂x

def=

∂y11
∂x11

· · · ∂y11
∂x1n

...
. . .

...
∂y11
∂xm1

· · · ∂y11
∂xmn

· · ·
· · ·
· · ·

∂y1q

∂x11
· · · ∂y1q

∂x1n

...
. . .

...
∂y1q

∂xm1
· · · ∂y1q

∂xmn

... · · ·
...

∂yp1
∂x11

· · · ∂yp1
∂x1n

...
. . .

...
∂yp1
∂xm1

· · · ∂yp1
∂xmn

· · ·
· · ·
· · ·

∂ypq

∂x11
· · · ∂ypq

∂x1n

...
. . .

...
∂ypq

∂xm1
· · · ∂ypq

∂xmn

(4)

From this definitions we can derive a variety of important special cases.

Derivative of a scalar function of a vector. We think of a vector as a
matrix with a single column and a scalar as a matrix with a single cell. Applying

2

the general definition we get that

∂y

∂x

def=

∂y
∂x1
...

∂y
∂xm

 (5)

Gradient of a scalar function of a vector. We represent gradients using
the ∇ sign. For the case of gradients of scalar functions of a vector, we define
the gradient to equal the derivative (note this will not be the case for vector
functions of vectors)

∇xy
def=

∂y

∂x
(6)

Derivative of a vector function of a vector. If we think of y and x as p×1
and m× 1 matrices, then the derivative would be a vector with mp dimensions.

∂y

∂x

def= (
∂y11

∂x11
· · · ∂yp1

∂x11
· · · ∂y11

∂x1m
· · · ∂yp1

∂x1m
)T (7)

Jacobian of a vector function of a vector. A more useful representation
can be obtained by working with the derivative of y with respect to the transpose
of x. This results on an p×m matrix which is known as the Jacobian of y with
respect to x

Jxy
def=

∂y

∂xT
=

∂y1
∂x1

· · · ∂y1
∂xm

...
. . .

...
∂yp

∂x1
· · · ∂yp

∂xm

 (8)

The Jacobian is very useful for linearizing vector functions of vectors

f(x) ≈ f(x0) + Jxf(x− x0) (9)

Gradient of a vector function of a vector. Note if y is a scalar then
Jxy = ∂y

∂xT = (∇xy)T i.e., the Jacobian of a scalar function is the transpose of
the gradient. With this in mind we will define the gradient of a vector function
of a vector as the transpose of the Jacobian

∇xy
def= (Jxy)T =

(
∂y

∂xT

)T

=
∂yT

∂x
(10)

Hessian of a scalar function of a vector. Let y = f(x), y ∈ <, x ∈ <n.
The matrix

Hxy
def= ∇2

xy
def= ∇x∇xy

def=
∂

∂x

(
∂y

∂x

)T

=

∂2y

∂x1∂x1
· · · ∂2y

∂x1∂xn

...
. . .

...
∂2y

∂xn∂x1
· · · ∂2

∂xn∂xn

 (11)

3

is called the Hessian matrix of y with respect to x.

2 Summary of definitions

For x, y vectors

Gradient: ∇x y
def=

∂yT

∂x
(12)

Jacobian: Jx y
def= (∇x y)T def=

∂y

∂xT
(13)

Hessian: Hx y
def= ∇2

x y
def= ∇x ∇x y (14)

3 Chain Rules

1. Vector functions of vectors: If z = h(y), is a vector function of a
vector, and y = f(x) is a vector function of a vector then

Jxz = (Jyz)(Jxy) (15)

or equivalently
∇xz = (∇xy)(∇yz) (16)

Example 1: Consider the quadratic function

z = yT ay (17)

where y is an n dimensional vector a is an n×n matrix. It is easy to show
that

∂xT ax

∂xk
=
∑

j

xj(akj + ajk) (18)

thus

JxxT ax = xT (a + aT) (19)

∇xxT ax = (a + aT)x (20)

Moreover if
y = bx (21)

where x is an m dimensional vector and b is an n×m matrix then

Jxy = b (22)

∇xy = bT (23)

Thus

4

Jx(bx− c)T a(bx− c) =
(
Jbx−c(bx− c)T a(bx− c)

)
(Jx(bx− c)) (24)

= (x− c)T (a + aT)b (25)

and

∇x(x− µ)T a(x− µ) = bT (a + aT)(x− c)T (26)

Example 2: Let x, y vectors

∇xexT y y = ∇xexT y ∇exT yexT y y (27)

where

∇xexT y = ∇xxT y ∇xT y exT y = yexT y (28)

∇exT y exT yy = ∇exT yyexT y = yT (29)

Thus
∇x exT y y = y exT y yT (30)

2. Scalar functions of matrices: If z = h(y) is a scalar function of a
matrix and y = f(x) is a matrix function of a scalar then

∂z

∂x
trace

[
∂z

∂y

(
∂y
∂x

)T
]

= trace

[(
∂z

∂y

)T
∂y
∂x

]
(31)

5

4 Useful Formulae (I need to check whether no-
tation is consistent with other parts of the
document)

Let a, b, c, d matrices, x, y, z vectors.

4.1 Linear and Quadratic Functions

d

dx
xT c = c (32)

∇x cx =
d

dx
(cx)T = cT (33)

Jx cx = (∇x cx)T = c (34)

d

dx
(ax + b)T c(dx + e) = aT c(dx + e) + dT cT (ax + b), (35)

d

dx
(ax + b)T c(ax + b) = aT (c + cT)(ax + b) (36)

d

da
(ax + b)T c(ax + b) = (c + cT)(ax + b)xT , (37)

d

da
xT aT bay = bT axyT + bayxT (38)

d

da
xT ay = xyT (39)

d

da
x′etay = txetay′ (40)

6

4.2 Traces

d

da
trace [a] = I (41)

d

db
trace [abc] =

d

db
trace

[
cT bT aT

]
= aT cT (42)

d

db
trace [abn] =

(
n−1∑
i=0

biabn−i−1

)T

(43)

d

de
trace

[
adbeT c

]
= aT cT dbT + caeb (44)

d

db
trace

[
aT ba

]
= (b + bT)a (45)

d

da
trace

[
a−1b

]
= −a−1bT a−1 (46)

4.3 Determinants

d

da
det [a] = det [a] a−T (47)

4.4 Kronecker and Vecs

∂vec[abc]
∂vec[b]

= c⊗ aT (48)

5 Matrix Differential Equations

d(at + bt)
dt

=
dat

dt
+

dbt

dt
(49)

d(atbt)
dt

=
dat

dt
bt + at

dbt

dt
(50)

d(a2
t)

dt
=

dat

dt
at + at

dat

dt
(51)

d(a2
t)

dt
=

dat

dt
at + at

dat

dt
(52)

data
−1
t

dt
= 0 =

dat

dt
a−1

t + a−1
t

dat

dt
(53)

a−1
t

dt
= −− a−1

t

dat

dt
a−1 (54)

(55)

7

It is only possible to expect deatdt = ate
at under conditions of full commuta-

tivity Types of linear matrix equations

dat

dt
= batc (56)

(57)

with special cases when b or c are the identity matrix. The following tricks allow
moving the coefficients to the left, or right

dat

dt
= atc (58)

then

daT
t

dt
= cT aT

t (59)

(60)

and if
dat

dt
= bat (61)

then

da−1
t

dt
= −a−1 dat

dt
a−1 = −a−1bata

−1
t = −a−1

t b (62)

(63)

It can be shown that if a0 is non-singular, then the solution at is non-singular
for all t.

8

6 Determinants

• |I + xy′| = 1 + x′y, x, y ∈ <n

• |ea| = etrace(a)

7 Trace

• trace(a + b) = trace(a) + trace(b)

• trace(a) = trace(aT)

• trace(abc) = trace(cab) = trace(bca)

• trace(xyT a) = yT ax, x ∈ <m, y ∈ <n

• trace(aT rbT) = aT rb confirm r does not need rotation

• If a is m× n and b is n×m then trace(ab) = trace(ba) = trace(aT bT)

8 Matrix Exponentials

• |ea| = etrace(a)

• if a = pΛp−1 then ea = peΛp−1

• deta

dt = aeta

• d
dax′etay = tetaxy′

8.1 Proofs:

∂x′eta

∂aij
=

d

dδ
x′et(a+δ1i1

′
j)y

∣∣∣∣
δ=0

= x′eta

(
d

dδ
etδ1i1

′
j

)
y

∣∣∣∣
δ=0

= x′etat1i1′je
δ1i1

′
j y
∣∣∣
δ=0

= t(etax)iyj (64)

Thus
∂x′eta

∂a
= tetaxy′ (65)

9 Matrix Logarithms

Let a a real or complex square matrix of ordeer n with positive eigenvalues.
Then there is a unique matrix b such that (1) a = eb and (2) the imagignary
part of the eigenvalues is in [−π, π]. We call b the principle logarithm of a.

• if a = pΛp−1 then log(a) = plog(Λ)p−1

9

10 Kronecker and Vec

Provide a way to deal with derivatives of matrix functions without having to use
cubix or quartix (i.e., matrices with 3 or 4 dimensions). Instead of working with
matrix functions we work with vectorized versions of matrix functions. This
gives rise to the Kronecker product, or tensor product.

Definition: Kronecker product

a⊗ b =

 a11b · · · a1nb
...

. . .
...

am1b · · · amnb

 (66)

Definition: Vec operator

vec[a] =

a11

...
am1

a12

...
am2

...
a1n

...
amn

(67)

10.1 Properties

1.
a⊗ b⊗ c = (a⊗ b)⊗ c = a⊗ (b⊗ c) (68)

provided the dimensions of the matrices allows for all the expressions to
exist.

2.
(a + b)⊗ (c + d) = a⊗ c + a⊗ d + b⊗ c + b⊗ d (69)

3.
(a⊗ b)(c⊗ d) = (ac)⊗ (bd) (70)

4.
(a⊗ b)(b⊗ d) = (ac)⊗ (bd) (71)

5.
(a⊗ b)T = aT ⊗ bT (72)

10

6.
(a⊗ b)−1 = a−1 ⊗ b−1 (73)

7.
vec
[
abT

]
= b⊗ a (74)

8.
vec [abc] = (cT ⊗ a) vec [b] (75)

9. If {λi, ui} are eigenvalues/eigenvectors of a and {δi, vi} are eigenvalues/eigenvectors
of b then {λiδj , ui ⊗ vj} are eigenvalues/eigenvectors ofr a⊗ b

10.
det[a⊗ b] = det[a]mdet[b]n (76)

where a, b are of order n× n and m×m respectively.

11.
trace(a⊗ b) = trace[a] trace[b] (77)

12.

∇2
vecx(axbxT) = ∇2

vecxvec(xT)(bT⊗a)vecx = b⊗a′+b′⊗atrace(a⊗b) = trace[a] trace[b]
(78)

where a, b, x are matrices.

11 Optimization of Quadratic Functions

This is arguably the most useful optimization problem in applied mathematics.
Its solution is behind a large variety of useful algorithms including Multivariate
Linear Regression, the Kalman Filter, Linear Quadratic Controllers, etc. Let

ρ(x) = E(bx− C)T a(bx− C) + xT d x (79)

where a and d are symmetric positive definite matrices, b is a matrix, x a vector
and C a random vector. Taking the Jacobian with respect to x and applying
the chain rule we have

Jxρ = Jbx−c(bx− c)T a(bx− c) Jx(bx− c) + JxxT d x (80)

= 2(bx− c)T ab + 2xT d (81)

∇xρ = (Jx)T = 2bT a(bx− c) + 2d x (82)

Setting the gradient to zero we get

(bT ab + d)x = bT ac (83)

This is commonly known as the Normal Equation. Thus the value x̂ that mini-
mizes ρ is

x̂ = hc (84)

11

where
h = (bT ab + d)−1bT a (85)

Moreover

ρ(x̂) = (bhc− c)T a(bhc− c) + cT hT dhc (86)

= cT hT bT abhc− 2cT hT bT ac + cT ac + cT hT dhc (87)

Now note

cT hT bT abhc + cT hT dhc = cT hT (bT ab + d)hc (88)

= cT aT b(bT ab + d)−1(bT ab + d)(bT ab + d)−1bT ac
(89)

= cT aT b(bT ab + d)−1bT ac (90)

= cT hT bT ac (91)

Thus

ρ(x̂) = cT ac− cT hT bT ac = cT kc (92)

where

k = a− hT bT a = a− aT b(bT ab + d)−1bT a (93)

This is known as the Riccati Equation which is found in a variety of stochastic
filtering and control problems.

Example Application: Ridge Regression Let y ∈ <n represents a set of
observations on a variable we want to predict, b is an n× p matrix, where each
row is a set of observations on p variables used to predict c, and x ∈ <p are the
weights given to each variable to predict y. A useful measure of error is

ρ(x) = (bx− y)T (bx− y) + λxT x (94)

where λ ≥ 0 is a constant that penalizes for the use of large values of x. Thus
the solution to this problem is

x̂ = (bT b + λIp)−1bT by (95)

where Ip is the p× p identity matrix.

12 Optimization Methods

12.1 Newton-Raphson Method

Let y = f(x), for y ∈ <, x ∈ <n. The Newton-Raphson algorithm is an iterative
method for optimizing y. We start the process at an arbitrary point x0 ∈ <n .

12

Let xt ∈ <n represent the state of the algorithm at iteration t. We approximate
the function f using the linear and quadratic terms of the Taylor expansion of
f around xt.

f̂t(x) = f(xt) +∇xf(xt)(x− xt)T +
1
2
(x− xt)T (∇x∇xf(xt)) (x− xt) (96)

and then we then find the extremum of f̂t with respect to x and move directly
to that extremum. To do so note that

∇xf̂t(x) = ∇xf(xt) + (∇x∇xf(xt)) (x− xt) (97)

We let x(t + 1) be the value of x for which ∇xf̂t(x) = 0

xt+1 = xt + (∇x∇xf(xt))
−1∇xf(xt) (98)

It is useful to compare the Newton-Raphson method with the standard method
of gradient ascent. The gradient ascent iteration is defined as follows

xt+1 = xt + εIn∇xf(xt) (99)

where ε is a small positive constant. Thus gradient descent can be seen as a
Newton-Raphson method in which the Hessian matrix is approximated by 1

ε In.

12.2 Gauss-Newton Method

Let f(x) =
∑n

i=1 ri(x)2 for ri : <n → <. We start the process with an arbitrary
point x0 ∈ <n. Let xt ∈ <n represent the state of the algorithm at iteration t.
We approximate the functions ri using the linear term of their Taylor expansion
around xt.

r̂i(xt) = ri(xt) + (∇xri(xt))T (x− xt) (100)

f̂t(x) =
n∑

i=1

(r̂i(xt))2 =
n∑

i=1

(ri(xt)− (∇xri(xt))T xt + (∇xri(xt))T x)2 (101)

(102)

Minimizing f̂t(x) is a linear least squares problem of well known solution. If we
let yi = (∇xri(xt))T xt − ri(xt) and ui = ∇xri(xt) then

xt+1 = (
n∑

i=1

uiu
T
i)−1(

n∑
i=1

uiyi) (103)

Note this is equivalent to Newton-Raphson with the Hessian being approxi-
mated by (

∑n
i=1 uiu

T
i)−1.

13

History

1. The first version of this document was written by Javier R. Movellan, on
May 2004, based on an Appendix from the Multivariate Logistic Regres-
sion Primer at the Kolmogorov Project. The original document was 7
pages long.

14

